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Abstract

Curiosity is a fundamental driver of human behavior, and yet
because of its open-ended nature and the wide variety of be-
haviors it inspires in different contexts, it is remarkably diffi-
cult to study in a laboratory context. A promising approach
to developing and testing theories of curiosity is to instanti-
ate them in artificial agents that are able to act and explore
in a simulated environment, and then compare the behavior
of these agents to humans exploring the same stimuli. Here
we propose a new experimental paradigm for examining chil-
dren’s – and AI agents’ – curiosity about objects’ physical in-
teractions. We let them choose which object to drop another
object onto in order to create the most interesting effect. We
compared adults’ (N=155) and children’s choices (N=66; 3-
7 year-olds) and found that both children and adults show a
strong preference for choosing target objects that could po-
tentially contain the dropped object. Adults alone also make
choices consistent with achieving support relations. We con-
textualize our results using heuristic computational models
based on 3D physical simulations of the same scenarios judged
by participants.
Keywords: curiosity; novel objects; object interactions; intu-
itive physics

Introduction
Curiosity is a hallmark aspect of human intelligence. From
infants exploring the objects in their environment to scien-
tists exploring the frontiers of our solar system, humans are
highly motivated to seek out new knowledge and experi-
ences. Although such exploratory behavior has long been
recognized as a critical component of human learning (James,
1983) and cognitive development (Gopnik, Meltzoff, & Kuhl,
2009; Piaget, 1952), formal theories that explain human cu-
riosity and how it drives exploratory behavior have remained
elusive (Kidd & Hayden, 2015). Moreover, extant theories
have rarely provided precise enough predictions to be directly
compared to empirical measurements of curiosity-driven be-
havior in humans, in part because curiosity tends to result in
complex, open-ended behaviors that are difficult to quantify.

The goal of the current paper is to help close this gap by
proposing a novel paradigm to advance our theoretical under-
standing of curiosity, specifically within the domain of physi-
cal object interactions (Bramley, Gerstenberg, Tenenbaum, &
Gureckis, 2018; Kubricht, Holyoak, & Lu, 2017). First, we
present an empirical investigation of the pattern of choices
taken by children and adults in a novel task. We then present
a set of heuristic models of this behavior based on a variety of
metrics of simulated physical interactions (e.g., likelihood of

a dropped object coming to rest on a target object), and test
the degree to which these features predict children and adults’
behaviors in the same task.

We take inspiration from a large body of prior work in
developmental psychology investigating the development of
knowledge about physical objects, their properties, and how
they interact (Baillargeon, 2007; Hespos & VanMarle, 2012;
Smith, Jayaraman, Clerkin, & Yu, 2018). Children both
spend a remarkable amount of time across exploring how dif-
ferent objects and surfaces interact during naturalistic play
(Fenson, Kagan, Kearsley, & Zelazo, 1976) and spend longer
time exploring objects that appear to violate physical laws
(e.g., an object that appears to pass through a wall; Stahl &
Feigenson, 2015; Baillargeon, 2007). In other words, chil-
dren seem to actively learn about physical interactions by in-
tervening on the world and observing the consequences of
their actions (Allen, Smith, & Tenenbaum, 2020; Gopnik
et al., 2009; Gureckis & Markant, 2012; Needham, 2000).
However, relatively little work has either examined what
types of physical interactions children are most interested in
testing, or linked children’s actions to formal theories of ex-
ploration or of physics learning. Instead, most work that has
investigated exploratory behavior in children has done so by
examining how they play with relatively complex objects –
for example, documenting the number of functions discov-
ered while playing with a novel toy (e.g., Cook, Goodman, &
Schulz, 2011; Bonawitz, Schijndel, Friel, & Schulz, 2012;
Gweon, Pelton, Konopka, & Schulz, 2014; Hoicka et al.,
2016).

We thus developed a novel physical exploration task in
which children, adults, or AI agents can choose which se-
ries of physical experiments to perform, and then demon-
strate how this paradigm can be used to test theories of cu-
riosity about physical interactions. First, we measured peo-
ple’s choices in a novel task, in which participants were told
that they would drop a given object (e.g., a sphere, a torus;
see Figure 1) onto one of two target objects (e.g., a dumbbell,
a pentagonal prism; see Figure 2), with the goal of the cre-
ating the most interesting physical interaction. We recorded
adults’ and children’s (3–7 years of age) choices for a set of
trials in which some of the drop objects could plausibly end
up supported by one of the target objects, and for a set of
trials in which some of the drop objects could end up con-
tained by one of the targets – although the other potential



targets likely also offered affordances of interest. After ex-
amining children’s and adult’s preferences, we tested the pre-
dictive power of a variety of heuristic features derived from
the simulated physics of this task in a 3D environment. To
preview our results, we found a surprising amount of consis-
tency in how both children and adults chose to explore the
relationships between different objects – but that this consis-
tency was not easily explained by any of the simple heuristic
features that we tested. We propose that this type of physical
exploration task is a promising test for adjudicating between
different embodied models of curiosity.

Experiment 1: Adults
To investigate the systematicity of people’s preferences for
physical interactions between objects, we began by studying
adults, whom we might expect to be less idiosyncratic and
thus more consistent in their choices than children. Our de-
sign is motivated by the results of a pilot study conducted in-
person in January, 2020, in which we asked adults to select
which of a pair of 3D-printed toy blocks (see Figure 1) they
would like to drop on a given target object from the set, or
vice-versa: on which of a given pair of target objects would
they like to drop a given object. In the pilot study (N=15),
the pairs of target or drop objects were chosen essentially at
random, but were the same for all participants. We were sur-
prised to find consistency in adults’ preferences for many of
the trials: especially when given a drop object and asked to
choose one of two target objects, adults were quite often (75-
90%) targeting the object that would either contain or support
the dropped object (i.e., the pipe could contain the cone; the
pentagonal prism could support the octahedron). This con-
sistency in their choices is remarkable given that there are
many other possible goals that people might choose in order
to make something “interesting” happen: they might attempt
to make the dropped object roll or bounce far from the target,
or rebound in an unexpected direction, but in fact most people
settled on attempting support or containment relations. Thus,
we set out to examine the development of these preferences,
first in a large adult sample in order to have high reliability
for later model comparisons, and then in young children.

Method
Participants 200 adults were recruited via Amazon Me-
chanical Turk and were paid $1 for participating.

Materials Stimuli were images of 3D objects produced us-
ing Blender 3D-modeling software. The nine objects, de-
picted in Figure 1, were bowl, cone, dumbbell, octahedron,
pentagon (pentagonal prism), pipe, pyramid, torus, triangular
prism, and ball (sphere; not pictured).

Design The experiment consisted of 20 drop trials, com-
pleted by each participant in one of four pseudorandom or-
ders. Participants were randomly assigned to each order.
Each drop trial displayed an object X that is to be dropped
on one of two other objects (Y or Z), as described in the fol-
lowing procedure. In the 20 trials, each of the above 3D ob-

Figure 1: (Top) Nine of the 10 3D objects used for dropping
and as targets (not pictured: ball). (Bottom) Example support
and containment relations.

jects was used twice as the drop object (X), and appeared four
times as potential targets. Instead of randomly sampling the
target objects (Y or Z), each trial was designed to allow for
one of two goal relations (or affordances): containment, or
support. That is, the target objects were chosen so that one
of them would be capable of either supporting or containing
the dropped object (see examples: Figure 1, bottom). For ex-
ample, if asked to drop the cone on either the torus or the oc-
tahedron, a containment relation could be achieved between
the cone and the torus, but not the octahedron (and support is
unlikely due to the small surface area of the octahedron). An
example support relation is choosing to drop the pentagonal
prism on the (equal diameter) pipe rather than the pyramid.
10 of the 20 trials were designed to afford containment rela-
tions, and the other 10 afforded support relations. We refer to
the objects affording the designed containment and support
relations as targets, and the alternative objects as distractors.
Distractors for each trial were the same for all participants,
and were selected to 1) not afford containment/support of the
dropped object, and 2) roughly equate the frequency of ap-
pearance of all 10 objects.
Procedure Participants were instructed that they would be
helping choose which toys to include in a new set of chil-
dren’s blocks in order to make them the most interesting.
Participants were then given a practice trial (see Figure 2),



Figure 2: Example of a trial given to adults in Experiment 1.

in which they were told that they should imagine dropping
a given object (the torus) on each of two toys (the dumb-
bell or the pentagonal prism) in a bin. They were then asked
to choose which toy to drop the torus on, and prompted to
choose the most interesting or surprising combination. Af-
ter making their choice on the practice trial, participants were
shown a 10-second video recording of 3D-printed plastic toys
carrying out their chosen interaction (e.g., if they chose the
dumbbell, they would see the torus dropped on the dumb-
bell). This was done to ensure that they understood the con-
sequences of the choice they made, although it was pointed
out to them that the video they saw showed only one possible
outcome. After the example video, participants were given a
sequence of 20 more drop trials asking them to choose which
toy (X or Y) they would like to drop object Z on. Four catch
trials were interspersed among the 20 drop trials, which asked
them to indicate which object they had just dropped on the
previous trial (3-alternative forced choice). The catch trials
were meant to encourage attention to the objects, and partic-
ipants who were incorrect on two or more of the catch trials
were excluded.

Results
We analyzed data from the 155 adults who completed the ex-
periment and answered at least 3 of the 4 catch trials correctly
(45 participants were excluded for not meeting this criterion).
Averaging each subject’s binary responses (1=target relation,
0=alternative) for each trial type revealed a stronger prefer-
ence for containment relations (M = 0.87) than support rela-
tions (M = 0.63; paired t(154) = 12.69, p < .001, d = 1.02).
Table 1 shows the proportion of participants that chose the
designed target relation for each of the 20 trials. Based on the
binomial distribution, any of the trials on which more than 90

of the 155 participants agree (i.e., >0.59 or <0.41) signifi-
cantly differ from chance. As can be seen in Table 1, adult
participants significantly preferred the target relation for all
10 of the containment trials, and significantly preferred five
targets on the 10 support trials; the other five support trials
did not significantly differ from chance, suggesting that many
participants found the prospect of dropping on the distractor
object at least equally enticing.

Further, these trial effects were quite reliable across par-
ticipants. We examined the split-half reliability of adults’
choices by repeatedly splitting the data and testing the cor-
relation between the halves. With 100 random samples, re-
liability for adults was r = 0.95 (sd=0.02). Reliability was r
= 0.85 (sd=0.07) for containment trials and r = 0.9 (sd=0.05)
for support trials.

relation drop target child adult
contain bowl pyramid 0.72 0.96
contain cone torus 0.73 0.94
contain dumbbell pipe 0.67 0.92
contain octahedron pipe 0.58 0.90
contain pentagon bowl 0.69 0.88
contain pipe cone 0.58 0.88
contain pyramid torus 0.71 0.87
contain sphere bowl 0.80 0.86
contain torus cone 0.67 0.81
contain trig prism bowl 0.65 0.71
support bowl torus 0.71 0.85
support cone trig prism 0.45 0.82
support dumbbell pentagon 0.38 0.74
support octahedron pentagon 0.45 0.64
support pentagon pipe 0.57 0.62
support pipe torus 0.60 0.56
support pyramid trig prism 0.52 0.55
support sphere pipe 0.58 0.54
support torus bowl 0.70 0.53
support trig prism pentagon 0.62 0.46

Table 1: Children’s and adults’ target preferences per trial.

Experiment 2: Children
Experiment 1 demonstrated that adults show consistent pref-
erences for dropping objects on target objects that afford con-
tainment relations, and to a lesser extent support relations.
Experiment 2 investigates whether these strong preferences
are present even in young children, recognizing that children
may find different types of physical interactions (e.g., rolling,
bouncing, unpredictability) of greater interest than adults, or
may simply show more idiosyncratic choice patterns.

Method

We adapted the same materials and procedure used in Experi-
ment 1 for use in an online experiment with children, in order
to directly compare the results for children and adults.



Participants Participants were 73 children recruited online
via outreach through a local nursery school and targeted Face-
book ads over the course of 6 months. Participant exclusions
were made based on cases where i) the participant did not
complete more than half of the trials or ii) the parent did not
consent for video recording of the session. After exclusions,
results from 66 children were analyzed, including 17 3-year-
olds, 15 4-year-olds, 16 5-year-olds, 16 6-year-olds, and 2
7-year-olds.

Materials The materials were the same as those used in Ex-
periment 1, except that the trials were adapted for presenta-
tion via Zoom in a slide presentation as shown in Figure 3.

Figure 3: Zoom screen configuration for children in Experi-
ment 2. Parents were asked to place the experimenter’s video
feed in the bottom center so the experimenter could point up
to the drop object and left and right at each target choice.

Procedure After the parent provided informed consent,
children were assigned to one of two pseudorandom trial or-
ders in counterbalanced order. To accompany the practice
trial, children were shown 3D-printed instances of the three
physical objects held by the researcher, to ensure that children
understood their physicality. Children were asked to verbally
select target object Y or Z, and then asked to confirm whether
they wanted to select the object on the red or green side of
the screen, in order to prevent left/right confusion. The sides
on which target objects and colors appeared were counterbal-
anced across trials.

Results
Similar to adults, averaging each child’s binary responses for
each trial type revealed a stronger preference for containment
relations (M = 0.68) than support relations (M = 0.56; paired
t(154) = 12.69, p < .001, d = 1.02). Unlike adults, however,
children did not show a significant preference for choosing
the support relation. Figure 4 shows the proportion of partic-
ipants’ choice of the designed target relation broken down by
relation type and age group. Preferences increased with age
and were overall stronger for containment.

We next examined trial-level effects in children. Table 1
shows the proportion of children (“child” column) choosing
the designed target relation for each of the 20 trials, along-
side the adult choice proportions from Experiment 1. Based

on the binomial distribution, any of the trials on which more
than 41 of the 66 participants agree (i.e., >0.64 or <0.36) sig-
nificantly differ (p<.05) from chance. Children significantly
preferred the designed relation on eight of the 10 contain-
ment trials, while only significantly preferring two of the 10
support relation choices. On the remaining two containment
trials and the other eight support trials, children’s preferences
also did not significantly differ from chance against the de-
signed relation. These item effects were relatively reliable,
though noisier than that of adults: the split-half reliability for
children’s choices was r = 0.61 (sd=0.09). The split-half re-
liability of children’s choices on containment trials was r =
0.32 (sd=0.22), and on support trials was r = 0.64 (sd=0.14).

0.00

0.25

0.50

0.75

1.00

contain support
relation

P
ro

po
rt

io
n 

C
ho

os
in

g 
Ta

rg
et

 R
el

at
io

n
Age Group

3−4 yo

5−7 yo

adult

Figure 4: Children’s vs. adults’ choices for each type of trial,
with bootstrapped 95% confidence intervals.

Comparison of Children’s vs. Adults’ Preferences Fig-
ure 5 shows adults’ (Experiment 1) vs. children’s (Experi-
ment 2) choice proportions for the target relations, colored by
relation type (visualizing the same data presented in Table 1,
but with 95% CIs). If adults’ and children’s judgments cor-
responded perfectly, they would fall along the dotted y = x
line, but children’s preferences mostly fall short of that line,
lying closer to the chance line (y = 0.5). At a glance, these
results seem to support the hypothesis that “children are noisy
adults” in this task as well as suggesting some consistency in
the trial-level effects across development. This consistency
also confers additional motivation for attempting to under-
stand what drives human interest in particular physical inter-
actions in this task through computational models.

Comparison to Physics Simulations
We next attempted to predict adults’ and children’s judgments
using a 3D model of the physical interactions instantiated in
our paradigm. We constructed a simulation of each drop in-
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Figure 5: Comparison of children’s vs. adults’ preferences on
each trial (dot), with bootstrapped 95% confidence intervals.

teraction in each trial using a physics engine (Gan et al., 2020)
and 3D models of the objects (the same models that we had
printed and used in the videos and photos in the experimental
paradigm). We then assessed how well a variety of heuristic
features based on these simulated physical interactions could
predict choice data.

Physical interaction model and features

For each trial’s two possible drop object choices, we ran 250
simulated drops, and for each drop we calculated a variety
of features measuring the state of the model after the drop
was completed. We selected features that we thought may
provide good metrics for what people could find interesting,
for instance, the mean amount of time before both objects
come to rest (M(Move Time)), as well as the standard devia-
tion of that time (SD(Move Time)). Some features were calcu-
lated separately for drop and target objects, such as how vari-
able each object’s final positions tend to be (e.g., the inverse
SD of each object’s final position (1/SD(Drop Obj Pos) and
1/SD(Target Pos)), the mean and maximum final distance of
each object from the drop location (e.g., M(Target Dist) and
Max(Target Dist)), and how variable the velocity of each ob-
ject tends to be after the first collision (e.g., SD(Target Vel)).
We also tested a variety of features based on the likelihood
of the dropped object coming to rest atop the target object–
Pr(support)–and the robustness of this likelihood to small
perturbations in drop position (Supp. Sharpness). Note that
the model’s definition of support does not explicitly distin-
guish support from containment.

We averaged each of these features across simulations and
then used the resulting values to generate relative preferences

for the drop choices on each trial. A model’s preference on
any given trial was assumed to be proportional to the relative
magnitude of the feature values for the possible physical in-
teractions on that trial, scaled by a softmax parameter β. For
each model (feature), we also optimized β separately to find
best-fitting values for children’s and adults’ choice propor-
tions, with the objective of minimizing mean squared error
(MSE) between model and human choice proportions across
all 20 trials.

Results
Overall, a few of these features were modestly correlated
with people’s choices. Table 2 shows the correlation be-
tween model preferences (with softmax β = 1) vs. adults’
and children’s choice proportions, both to all trials and sep-
arately for containment and support trials. When all trials
were considered together, the feature with the strongest cor-
relation to adults’ choices was the velocity of the target object
(SD(Target Vel), r = .33), while the feature with the strongest
correlation to children’s choices was Support Sharpness (see
Methods, r = .18). For support trials, both adults’ (r = .39)
and children’s (r = .41) choices were best correlated with
a feature indexing the variability in the target object’s final
position (1/SD(Target Pos)). For containment trials, adults’
choices were most correlated with the velocity of the dropped
object (SD(Drop Obj Vel), r = .54), which also showed a
modest correlation with children’s choices (r = .41); how-
ever, children’s choices were most correlated with the maxi-
mum distance of the target object (Max(Target Dist), r = .43).
Many of the other features showed weak or even moderate
negative correlations with people’s choices.

Examination of the models with β optimized, in contrast,
revealed that none achieved a good fit to human preferences.
While the best-fitting feature, Pr(support), captured both
adults’ and children’s overall mean preference for the de-
signed target relations, it explained essentially no trial-level
variation and was in fact negatively correlated with choices.
This was not due to noisy behavioral data: while the noise
ceiling on choice preferences for all trials was r = 0.99 for
adults and r = 0.87 for children, the best-fitting feature ac-
counted for very little of that.

General Discussion
This study aimed to 1) measure the consistency of children’s
and adults’ preferences for particular object interactions, and
2) determine whether people’s interest was predicted by par-
ticular features of the imagined physical interactions between
objects. In an online study that gave adults the opportunity
to make drop choices that could result in either a likely sup-
port or likely containment relation on each trial, we found that
adults consistently chose targets likely to contain the dropped
object, and to a lesser degree chose target objects that were
likely to support the dropped object. Experiment 2 found the
same pattern in children, but with attenuated preferences, es-
pecially in the youngest children. One interpretation of these
results is that infants’ early-emerging interest in containment



Table 2: Correlations (r) of model and human responses.

Feature Adult: All Child: All Adult: Support Child: Support Adult: Contain Child: Contain

SD(Target Vel) 0.33 -0.11 0.1 -0.51 0.34 -0.09
1/SD(Target Pos) 0.14 -0.08 0.39 0.41 0.16 -0.52
M(Target Dist) 0 0.13 0.11 0.22 0.42 0.42
Max(Target Dist) -0.01 0.17 0.11 0.33 0.41 0.43
Supp. Sharpness -0.02 0.18 -0.26 0.14 0 0.18
M(Move Time) -0.07 0.04 -0.08 -0.08 -0.02 0.29
SD(Drop Obj Vel) -0.1 0.17 -0.27 0.3 0.54 0.41
SD(Move Time) -0.18 -0.19 -0.01 -0.29 -0.37 0.13
Pr(support) -0.36 -0.48 -0.48 -0.54 -0.39 -0.51
Max(Drop Obj Dist) -0.45 -0.28 -0.39 -0.29 -0.09 0.18
M(Drop Obj Dist) -0.47 -0.31 -0.45 -0.35 -0.04 0.2
1/SD(Drop Obj Pos) -0.48 -0.32 -0.49 -0.33 -0.1 0.12

(Casasola, Cohen, & Chiarello, 2003) may be related to older
children’s and adults’ interest in stochastic interactions that
have some possibility of producing containment relations.

Given the high reliability of choices on this task, particu-
larly for adults (r = .95, children r = .61), we tested how well
heuristic features of the physical interactions could predict
these choices. In light of findings that people often single out
one of several possible causes as “the” cause in judgements
of physical causation (e.g., Gerstenberg & Icard, 2020), we
might expect to find single features that are predictive of peo-
ple’s choices. We explored a wide range of features that we
thought might be proportional to people’s interest in particu-
lar object interactions (e.g., how far a dropped object might
end up from the drop location), but not one of these features
explained much of the trial-level variance in people’s choices.
Instead, we found a few features that were partially correlated
with people’s choices: for example, the best predictor of both
children’s and adult’s choices on support trials was the in-
verse standard deviation of the target’s final position, but the
strength of this correlation was only moderate (r ≈ 0.4). For
containment trials, the normed velocity of the drop object af-
ter first collision was most correlated with adults’ choices and
moderately with children’s, but children’s choices were also
correlated with the maximum and mean distance traveled by
the target. On balance, although much systematic variation
in this dataset is unaccounted for, it is somewhat encourag-
ing that people’s interest in physical interactions can be in
part accounted for by simple heuristic features based on sim-
ulations of the same physical task we asked participants to
merely imagine.

At the same time, the fact that these results are not fully
explainable by simple heuristic models suggest that this
paradigm may fruitfully serve as a test bed for evaluating
more complex computational theories of curiosity. For ex-
ample, in one proposal learners prefer to explore stimuli that
are “moderately discrepant” in relation to their current knowl-
edge state, thereby providing an opportunity to learn (Kinney

& Kagan, 1976), and curiosity changes as the gap between
the learner’s knowledge develops and the state of the world
closes (Loewenstein, 1994). These theories are beginning
to be implemented in deep neural networks, which are now
capable of learning forward and inverse physical dynamics
(i.e., “intuitive physics”) from images when given the ability
to “poke” the objects in the scene (Agrawal, Nair, Abbeel,
Malik, & Levine, 2016), and have more recently been used
to test which “curiosity” policies for generating actions result
in robust and effective learning of intuitive physics in deep
reinforcement learning agents (Haber, Mrowca, Fei-Fei, &
Yamins, 2018).

Such embodied deep reinforcement learning agents are
often composed of two models: a world model which at-
tempts to predict the consequences of the agent’s actions (i.e.,
the forward dynamics–physics–of the world), while the self
model attempts to predict the errors of the world model. The
predictions of the self model can be used to implement dif-
ferent curiosity policies for choosing actions (e.g., picking
actions that are expected to challenge its world model; Haber
et al., 2018). In future work, we aim to examine the develop-
ment of curiosity in such curious artificial agents, and com-
pare whether these agents behave similarly to people when
asked to “drop it like it’s hot” (Dogg, 2004). Will these agents
show choices consistent with potential containment/support
relations, or do these human-like preferences require repre-
sentation and selection of possible goals? How might the
agents’ choices evolve over time, as the world model ma-
tures? Might the agents’ curiosity policies need to change
over development in order to match people’s choices, or do
these goals emerge through the dynamics of learning?

The multifaceted nature of curiosity has fascinated re-
searchers for decades, but only recently have we developed
the means to factorize and test these theories. We propose that
the development of parallel tasks for children, humans, and
embodied agents is a promising way forward towards model-
ing curiosity in the real world.



All data and code for these analyses are available at
https://osf.io/37qvb
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