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Abstract

One problem language learners face is extracting word mean-
ings from scenes with many possible referents. Despite the am-
biguity of individual situations, a large body of empirical work
shows that people are able to learn cross-situationally when a
word occurs in different situations. Many computational mod-
els of cross-situational word learning have been proposed, yet
there is little consensus on the main mechanisms supporting
learning, in part due to the profusion of disparate studies and
models, and lack of systematic model comparisons across a
wide range of studies. This study compares the performance
of several extant models on a dataset of 44 experimental condi-
tions and a total of 1,696 participants. Using cross-validation,
we fit multiple models representing theories of both associa-
tive learning and hypothesis-testing theories of word learning,
find two best-fitting models, and discuss issues of model and
mechanism identifiability. Finally, we test the models’ abil-
ity to generalize to additional experiments, including develop-
mental data.
Keywords: cross-situational word learning; model compari-
son; language learning

Introduction
Learning word meanings is a crucial aspect of the process
of language acquisition. If a learner’s task is to connect
the words they hear to the potential referents and eventually
to generalizable meanings, the challenge appears formidable
(Quine, 1960): words are heard in rich and cluttered contexts.
Yet children learn words very quickly. How do they do this?

An array of social (Yurovsky & Frank, 2017), pragmatic
(Clark, 1987; Markman, 1992), and linguistic (Gleitman,
1990) cues are often available to reduce a learner’s un-
certainty. Yet at its heart, these information sources can
be seen as reducing the uncertainty inherent in the task of
cross-situational mapping (Frank, Goodman, & Tenenbaum,
2009): that is, cross-referencing which referents a word has
consistently appeared with across multiple uses (Carey &
Bartlett, 1978; Gleitman, 1990). If learners can learn cross-
situationally, they might be able to pool information about
reference (and hence word meaning) over time and learn even
absent perfectly disambiguated input in any particular situa-
tion. Can children (or even adults) learn in this way?

The general idea of cross-situational word learning has
been adopted into a variety of experimental paradigms for
testing the word learning ability of infants (e.g., Smith &
Yu, 2008; Vlach & Johnson, 2013), children (e.g., Akhtar &
Montague, 1999; Suanda, Mugwanya, & Namy, 2014; Vlach
& Sandhofer, 2012), and adults (e.g., Yu & Smith, 2007;

Smith, Smith, & Blythe, 2011). In such experiments, par-
ticipants are typically presented with a series of training trials
comprised of multiple possible referents (e.g., an array of 2-
4 novel objects) and one or more spoken nonce words, and
(when possible) instructed to learn the meaning(s) of the pre-
sented words. These training trials typically present 10–20
distinct word-referent pairs to be learned across 10–50 tri-
als, presenting each word/referent 3–10 times across a total
span of < 10 minutes. Learning is then typically assessed by
presenting each word and asking learners to make a forced
choice of the best referent, either from the entire set or from
a small subset of referents.

People of all ages are able to learn word-object mappings in
such paradigms at a level significantly above chance, but their
performance is typically far from perfect in all but the most
trivial versions of the task (Yurovsky & Frank, 2017). Nu-
merous training manipulations have been found to influence
performance. How often mappings are presented (Kacher-
gis, Yu, & Shiffrin, 2016; Suanda & Namy, 2012), the in-
terval between appearances of a mapping (Vlach & Johnson,
2013; Vlach & Sandhofer, 2012), and the number of map-
pings presented per trial (Yu, 2008) all have been shown to
affect learning performance. In sum, the evidence is strong
that people can learn word cross-situationally: we are some-
how able to integrate evidence (co-occurrence of words and
objects) across trials and use that evidence to learn and re-
member new word meanings in cross-situational learning ex-
periments. But what are the psychological mechanisms sup-
porting this process? And critically, do these mechanisms
support naturalistic word learning?

Computational models provide one strategy for instanti-
ating proposals about mechanism. Such models can then
be applied to naturalistic data to make a first assessment of
whether cross-situational learning could be a viable strategy
for word learning “in the wild”. Accordingly, there has been
great interest in creating and testing computational models of
this task. These models often represent distinct intuitions of
how learning operates, variously representing the problem as
logical inferencing (e.g., Siskind, 1996), proposing and test-
ing hypotheses (e.g., Trueswell, Medina, Hafri, & Gleitman,
2013), or accumulating graded associations (e.g., Fazly, Al-
ishahi, & Stevenson, 2010; Kachergis, Yu, & Shiffrin, 2012).

It is unknown which of these models – or even which
broad class of models – best fits the breadth of experimental



data. While most models of cross-situational learning have
typically been tested against at least a few datasets, to our
knowledge there has been no systematic comparison of mod-
els across a wide variety of experimental conditions. Iden-
tifying the model(s) that best predict human performance is
thus an important goal for consolidating this broad literature.
More broadly, identifying such models could be an important
step in assessing the contribution of cross-situational learning
to word learning more generally.

Thus, the goal of our current study is to test the ability of
a range of cross-situational word learning models in account-
ing for a wide range of experimental data. Our goal is to
scale up both the number of models evaluated and the num-
ber of experiment designs (and participants) being used for
evaluation. Different models often contain a range of param-
eters that must be fit to data, an issue that has hindered pre-
vious comparison work, either because the parameters have
been allowed to vary freely across multiple conditions, or be-
cause models’ performance is compared on different datasets.
Thus, we focus on out-of-sample prediction of human data
using cross-validated parameter fits. We end by examining
results from generalization of models to other experiments
not included in the initial evaluation and parameter fitting.

Method
Procedure
Our goal is to fit a set of models to a set of datasets; members
of each of these sets are listed below. Each model typically
is defined as a function that takes input data and a group of
parameter values (often between 2–4) and then can be eval-
uated on test trials (typically multi-alternative forced choice
test). Each model then returns predictions on each test trial,
which can be scored against the “correct” (intended by the de-
sign) answer and averaged to produce an analogue to human
performance. Our primary outcome measure is the correla-
tion between each model’s performance for each item in a
specific experimental condition and item-level human perfor-
mance on that same experimental condition.

Although input data and test trials are features of specific
experimental tests, each model has parameters that must be
specified. Typically the settings of these parameters are crit-
ical to the predictive performance of the model. Hence, to
ensure a fair comparison between models, these parameters
must be fit to data. In all cases, we optimize parameter values
to minimize the sum of squared error (SSE) between model
and human performance, weighting the contribution of each
condition’s SSE by the number of participants in that condi-
tion. We optimize parameters using differential evolution via
the DEoptim R package (Mullen, Ardia, Gil, Windover, &
Cline, 2011). For the stochastic models, each parameter set-
ting was evaluated using a simulated sample of 200 learners.

We conducted two evaluations of models. First, we opti-
mize each model’s parameters on 80% of data and evaluate
on the remaining 20% (5-fold cross-validation) . Second, in
the group fit regime we fit each model to all conditions and
datasets and evaluate across all data. Though slightly overfit,

this evaluation allows us to make the best test of generaliza-
tion to other experiments from the literature.

Models
We fit a baseline co-occurrence model along with six asso-
ciative models, two hypothesis-testing models, and two hy-
brid models that store multiple, graded hypotheses–but only
a subset of all possible associations. These models and their
free parameters are briefly described below.

Baseline Co-occurrence Model The baseline model sim-
ply tallies the co-occurrences of any words and objects ap-
pearing together on each trial, accumulating the counts in a
word × object matrix M. At test, for word w1 this model se-
lects the correct referent o1 according to Luce choice from
the co-occurrences of w1 with all referents: P(o1|w1) =
Mw1,o1/∑Mw1,·. The model’s probability of correctly choos-
ing each word per condition is what is scored against people’s
average probability of choosing the correct item.

Probabilistic Associative Model (PA) The probabilistic
associative model (Fazly et al., 2010) represents the meaning
of each word w as a probability distribution p(·|w) over the
objects appearing across the trials, and incrementally learns
these distributions trial-by-trial. The association between a
given w and o grows more quickly if p(w|o) is already high (a
familiarity bias), unless some other word has a strong associ-
ation with o; thus, associations are competitive. A parameter
λ is a small smoothing constant added to both the numera-
tor and denominator of each p(w|o), further adjusted in the
denominator by a β parameter representing the upper bound
on the number of symbol types. At test, the correct referent
for each word w is chosen according to Luce choice from the
probability distribution over the objects that appeared with
that word p(·|w).1

Familiarity- and Uncertainty-biased Model (FU) The
familiarity- and uncertainty-biased associative model
(Kachergis et al., 2012) assumes that learners associate all
presented words with all visible objects to some extent, but
that they selectively attend more to some of the presented
word-object pairings. Specifically, greater attention is
directed to pairings that have previously co-occurred (a
familiarity bias), but is also directed to stimuli that have
no strong associates, tracked via the entropy (H) of their
association strengths (e.g., novel stimuli, or stimuli that
have diffuse associations with several stimuli). Thus, the
model grows its association matrix as it experiences each
trial, dynamically apportioning a fixed amount of associative
weight (learning rate χ) among the possible word-object
associations, with the relative weight of the familiarity
bias and the uncertainty bias determined by parameter λ.
Association strengths decay at a rate controlled by parameter
α. The update rule for adjusting the association Mw,o between
a given word w and object o on a given trial is:

1The original model implemented a θ-thresholded lexicon that
discretized the probability matrix, but we found that including this
mechanism resulted in a worse fit to the data.



Mw,o = αMw,o +
χ · eλ·(H(w)+H(o)) ·Mw,o

∑w∈W ∑o∈O eλ·(H(w)+H(o)) ·Mw,o
(1)

At test, given word w learners use Luce choice, choosing
referent o from the m given alternatives in proportion to asso-
ciative strength Mw,o.

We also fit a stochastic sampling (FUs) version of this
model (see Kachergis & Yu, 2017), which uses the same up-
date equation, but samples only a single presented object for
each word on a trial instead of updating all possible associa-
tions. This FU sampling model can still build multiple graded
associations for each word (or object), but on any given run
will accumulate only a sparse, randomized version of what
the full associative model would build.

Strength-, Uncertainty-, & Novelty-biased (Str,Unc,Nov)
Models We also test three variations of the FU model that
use only a subset of the mechanisms of the full model in or-
der to understand the contributions of each mechanism. The
strength model lacks the uncertainty bias term, and thus only
implements a bias for familiar (i.e., already-strong) associa-
tions, with learning rate (χ) and decay α parameters.

The uncertainty model lacks the strength bias term, and
thus only implements a bias for stimuli with uncertain (high-
entropy) associations. The novelty model also lacks the
strength bias term, and substitutes novelty for the entropy
terms (e.g., 1/(frequency(w)+1) instead of H(w)). These
models have all three parameters of the original FU model,
and operate in the same way as that model at test.

Bayesian Decay Model (BD) This previously-unpublished
model updates the p(w|o) and the joint probability p(w,o)
from trial to trial according to a likelihood function that re-
inforces the association between w and o when they co-occur
(scaled by parameter δ), and penalizes all associations that
are not occurring on the trial (scaled by parameter α). Thus,
in contrast to other incremental associative learning models
considered here (e.g., Fazly and the Kachergis class of mod-
els), this model globally updates the entire association matrix
on each trial – both co-occurring pairs and non-co-occurring
pairs, and re-normalizes the tracked probabilities at each time
step. At test, this model uses a softmax choice rule with pa-
rameter τ to select the best referent for each word from the
presented alternatives.

Rescorla-Wagner Model (R-W) This associative model
is inspired by the prediction-error-based learning model of
Rescorla & Wagner (1972). Objects on each trial serve as
cues to predict which words will be heard. When a given
word is heard, the associations between that word and each
object on the trial are scaled at a learning rate β in proportion
to the magnitude of the difference between the prediction and
the maximum association value (λ). Each trial, the associ-
ation matrix is subject to decay (parameter α). At test, this
model uses Luce choice to select the best referent for each
word from the presented alternatives.

Propose-but-Verify Model (PbV) In the propose-but-
verify hypothesis testing model (Trueswell et al., 2013), a
presented referent is selected at random for any presented
word that has no remembered referent. The next time that
word occurs, the previously-proposed referent is remembered
with probability α, a free parameter. If the remembered ref-
erent is verified to be present, the future probability of recall-
ing the word is increased by parameter ε. If the remembered
referent is not present, the old hypothesis is assumed to be
forgotten and a new proposal is selected from the available
referents. This model implements trial-level mutual exclusiv-
ity by selecting new proposals only from among the referents
that are not yet part of a hypothesis.
Guess-and-Test Model (GnT) The guess-and-test hypoth-
esis testing model is based on the description given by Med-
ina, Snedeker, Trueswell, & Gleitman (2011) of a one-shot
(i.e. “fast mapping”) learning, which posits that “i) learners
hypothesize a single meaning based on their first encounter
with a word, ii) learners neither weight nor even store back-
up alternative meanings, and iii) on later encounters, learners
attempt to retrieve this hypothesis from memory and test it
against a new context, updating it only if it is disconfirmed.”
We give this model two free parameters: a probability of suc-
cessful encoding (s, hypothesis formation), and a probability
f of forgetting a hypothesis at retrieval. At test, for each word
the model chooses the currently hypothesized referent.
Pursuit Model (Pur) The pursuit model (Stevens, Gleit-
man, Trueswell, & Yang, 2017) is a hybrid model, potentially
storing graded associations involving a given word and multi-
ple referents (or vice-versa), while on any given trial greedily
pursuing the strongest association for each presented word. If
the strongest associated referent for a given word w is present
on the trial, the association is strengthened at a rate deter-
mined by γ. If the strongest referent for w is not present,
the association is weakened (scaled down by (1− γ)) and the
association with a random other available referent is strength-
ened. Novel words are given an initial association of strength
γ with the available referent whose strongest association is
the smallest, implementing an uncertainty bias in forming as-
sociations for novel words. A given word-object association
only enters the lexicon if p(o|w) > θ, a threshold parameter.
At test, this model chooses the best referent for each word by
Luce choice from the lexicon, which is not necessarily 1-to-1.

Data
The modeled data are average accuracies from 726 word-
object pairs in 44 experimental conditions, in which a total
of 1696 subjects participated. A table containing details of
each condition is available on OSF2. The number of trials per
condition ranged from 18 to 108, with 1-4 words and objects
presented per trial, and a total of 12-24 pairs to be learned
per condition. The bulk of these data have been previously
published: data from 13 of the conditions were reported in
Kachergis & Yu (2013), data from 12 conditions are from

2Information about the dataset: https://osf.io/REDACTED

https://osf.io/s2aty/?view_only=c91c852f00b847e0a71d5f4deaf7b7a5


Kachergis et al. (2012), and data from another nine condi-
tions are from Kachergis et al. (2016). However, data from
several conditions are contributed by Chen Yu’s lab at Indiana
University, and have never before been published. Each con-
dition consists of an ordered list of training trials consisting of
1-4 words and 2-4 objects per trial. At test, participants heard
each word and were asked to select the best referent from
either all m presented objects (m-alternative forced choice;
AFC), or from a subset (e.g., 4AFC).

Results
Table 1 shows the sum of squared error (SSE) and corre-
lation (r) for each model’s best-fitting parameters vs. aver-
age human performance on the 726 items, both for the CV
fits and for the all-condition fits, along with the number of
fitted parameters in each model (P). The results of the two
fitting procedures mostly yielded similar SSEs and correla-
tions, and a consistent rank-ordering of the models, with the
Kachergis sampling model performing best, followed closely
by the Fazly et al. model and then the associative Kachergis et
al. model. The hypothesis testing models (Propose-but-Verify
and Guess-and-Test), the Pursuit model, and R-W fit roughly
as well as the 0-parameter baseline co-occurrence counting
model, which had SSE = 32.0 and r = 0.53. Correlations be-
tween data and models are presented in Figure 1.

Model CV SSE r All SSE r P
FUs 17.74 0.74 17.81 0.74 3
PA 18.72 0.73 18.77 0.73 2
FU 18.92 0.72 19.07 0.72 3
Nov 22.02 0.67 22.01 0.67 3
Unc 23.06 0.69 23.02 0.69 3
BD 23.95 0.62 23.71 0.63 3
GnT 31.49 0.50 30.98 0.51 2
R-W 31.80 0.62 31.79 0.62 3
Str 39.05 0.46 39.07 0.46 2
Pur 41.68 0.57 40.56 0.59 3
PbV 42.92 0.35 30.76 0.51 2

Table 1: Cross-validated and group model fits.

Table 2 shows the correlations between model predic-
tions made using the group-optimized parameters, with the
strongest correlation per row in bold.

Generalization Experiment Results
Using the optimal parameters found for each model in
the group fit, we simulated model performance for four
other published (two adult, two developmental) for which
we only have participants’ average performance. Koehne,
Trueswell, & Gleitman (2013) manipulated the temporal or-
der with which words were assigned two meanings of dif-
ferent strengths across four conditions given to adults. Med-
ina et al. (2011) manipulated the informativeness (number
of referents per trial) and order of trials across four condi-
tions, again with adults. Smith & Yu (2008) and Yu & Smith

Table 2: Correlations of models’ predictions.

FUs PA FU Nov Unc BD PbV GnT R-W Str Pur

FUs - .87 .92 .87 .82 .75 .51 .68 .83 .60 .74
PA .87 - .84 .79 .81 .79 .58 .70 .84 .59 .68
FU .92 .84 - .87 .83 .79 .50 .63 .78 .60 .67
Nov .87 .79 .87 - .74 .82 .50 .67 .79 .74 .70
Unc .82 .81 .83 .74 - .64 .47 .66 .80 .53 .66

BD .75 .79 .79 .82 .64 - .56 .60 .70 .67 .53
PbV .51 .58 .50 .50 .47 .56 - .65 .67 .53 .41
GnT .68 .70 .63 .67 .66 .60 .65 - .87 .62 .54
R-W .83 .84 .78 .79 .80 .70 .67 .87 - .65 .68
Str .60 .59 .60 .74 .53 .67 .53 .62 .65 - .28

Pur .74 .68 .67 .70 .66 .53 .41 .54 .68 .28 -

Table 3: Generalization experiment results.

Model Koehne Medina Suanda Smith & Yu Adult RMSE Dev RMSE

R-W 0.09 0.11 0.11 0.17 0.2 0.28
Nov 0.06 0.17 0.2 0.29 0.23 0.49
FUs 0.07 0.16 0.25 0.27 0.24 0.52
Str 0.07 0.17 0.18 0.29 0.25 0.47
PA 0.11 0.15 0.13 0.24 0.26 0.37

FU 0.09 0.19 0.26 0.29 0.27 0.55
Unc 0.1 0.19 0.2 0.22 0.29 0.42
Pur 0.15 0.25 0.3 0.24 0.4 0.54
PbV 0.24 0.16 0.21 0.27 0.41 0.48
GnT 0.25 0.17 0.23 0.28 0.42 0.51

BD 0.15 0.45 0.05 0.32 0.6 0.36

(2011) trained 12- and 14-month-old infants on 6 words re-
peated across 30 trials, and found that infants learned on aver-
age 4 words. Suanda et al. (2014) tested 6-year-old children
in three conditions with varying contextual diversity. Table
3 shows the root-mean-square error (RMSE) of each model
vs. average human performance, as well as the total RMSE
separately for the adult experiments and the developmental
experiments. The models generally outperformed children
and thus did not fit well to the developmental conditions.
Nevertheless, the Rescorla-Wagner model best matched both
the Medina et al. adult data and the Smith & Yu developmen-
tal data. The novelty-biased model best predicted the Koehne
et al. adult data, with FUs and the Strength-biased models just
behind. Finally, the Suanda et al. developmental data was best
fit by the Bayesian Decay model.

Discussion
We set out to conduct a systematic comparison of several
models of cross-situational word learning models across a
wide variety of experimental conditions. Using a large
dataset, we found best-fitting parameters for 11 models both
by simultaneously fitting all of the data, and using cross-
validation. The results of both fitting regimes were consistent
and clear: shown in Table 1, the associative models generally
achieved better fits (lower SSE and higher correlations) than
the hypothesis-testing models (GnT; Medina et al. (2011) and
PbV; Trueswell et al. (2013)), which made correlated predic-
tions (see Table 2: r = .65). The Rescorla-Wagner model,
a prediction error-based associative model, performed sim-
ilarly to the GnT model, with highly correlated predictions
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Figure 1: Human vs. model item-level accuracy using best-fitting parameters per model for all conditions (colored by condi-
tion). Note that on some items, PbV, GnT, and Pursuit all show more extreme responding (1 or 0) than people ever do.

(r = .87), while PbV had the poorest fit, and made responses
most similar to the R-W model (r = .67). Moreover, the pre-
dictions of the R-W model were also highly correlated with
the baseline co-occurrence counting model (r = .999): such
similar predictions yielded by seemingly different theories is
surprising and warrants further investigation. However, some
models’ particular patterns of responses suggest certain theo-
retical shortcomings. For example, the hybrid Pursuit model
(Stevens et al., 2017) fared poorly, in part because it often
outperformed humans (MPur = 0.56), Mhum = 0.48). Indeed,
as shown in Figure 1, Pur, PbV, and GnT all showed a pattern
of inhuman responses: for a subset of items, the models either
always got them correct or always got them incorrect, while
people were more stochastic.

Among the associative models, the PA model (Fazly et al.,
2010) and the FU model (Kachergis et al., 2012) both fare
quite well, and the sampling version of the FU model (FUs)
performs slightly better, albeit with three free parameters
compared to two in the PA model. The predictions of the top
three models are more correlated with each other than with

the human data (see Table 1): PA vs. FUs: .87, PA vs. FU:
.84, FU vs. FUs: .92. But the PA model also showed a .84 cor-
relation with the Rescorla-Wagner model, and both FU and
FUs show a .87 correlation with the simpler novelty-biased
associative model (N)–stronger than for the uncertainty-bias
mechanism used by the FU models. Future work should aim
to further explore when these models make overlapping pre-
dictions, but another approach is to find conditions where
models make disparate predictions. The FUs and PA mod-
els make maximally divergent predictions in the conditions
with fewer words than objects per trial (esp. 1x3, 1x3 6/18
4AFC, and 1x4), which hints at a difference in mechanism
for these models. A fruitful next step would be to use opti-
mal experiment design to generate a definitive experiment to
differentiate these models.

Although we have aimed for broad coverage of models and
experimental conditions, this study is far from complete in
both respects. First, there are many other models that we have
not yet implemented (e.g., McMurray, Horst, & Samuelson,
2012). Moreover, this dataset represents performance from



a fairly homogeneous sample: English-speaking US college
students. Future work should aim to include not only more
models, but a more broadly diverse sample, both in terms of
language background and age. The small number of general-
ization experiments run here suggest that parameters fitted to
adult experimental conditions do not generalize well to devel-
opmental experiments: future research should gather a larger
set of developmental data and re-fit these models with cross-
validation. We invite other researchers to contribute datasets
and model implementations for future, larger-scale compar-
isons: data and model code will be open-sourced and avail-
able on OSF.

In summary, we have shown not only how a large model
comparison can help rank models from most to least able
to account for human data, but also how such comparisons
can identify models that mimic each other, as well as iden-
tifying experimental designs that might aid in distinguish-
ing models. Future work should extend this comparison to
cross-situational word learning models and extant datasets
beyond those tested here, and design novel experiments de-
signed to distinguish these models. Finally, assuming that
cross-situational learning is an important tool in the language
learner’s toolbelt, it is important to consider how these mod-
els can be extended to incorporate other information sources
at the learner’s disposal, such as social cues, pragmatics, and
syntactic constraints on meaning (Hirsh-Pasek, Golinkoff, &
Hollich, 2000; Markman, 1990; Yurovsky & Frank, 2017).
While many of these models have mechanisms for prefer-
entially selecting and storing particular associations, most
have yet to formally incorporate relevant cues from social
partners–linguistic and nonlinguistic (though see Yurovsky &
Frank, 2017). More broadly, we believe that structured model
comparison is a critical step towards developing more com-
plete models and, eventually, quantitative identification of the
fundamental mechanisms of word learning.
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