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Abstract

Social networks support efficient decentralized search: people can collectively construct short
paths to a specified target in the network. Rank-based friendship—where the probability that
person u befriends person v is inversely proportional to the number of people who are closer
to u than v is—is an empirically validated model of acquaintanceship that provably results
in efficient decentralized search via greedy routing, even in networks with variable population
densities. In this paper, we introduce cautious-greedy routing, a variant of greedy that avoids
taking large jumps unless they make substantial progress towards the target. Our main result
is that cautious-greedy routing finds a path of short expected length from an arbitrary source
to a randomly chosen target, independent of the population densities. To quantify the expected
length of the path, we define the depth of field of a metric space, a new quantity that intuitively
measures the “width” of directions that leave a point in the space. Our main result is that
cautious-greedy routing finds a path of expected length O(log2 n) in n-person networks that
have aspect ratio polynomial in n, bounded doubling dimension, and bounded depth of field.
Specifically, in k-dimensional grids under Manhattan distance with arbitrary population den-
sities, the O(log2 n) expected path length that we achieve with the cautious-greedy algorithm
improves the best previous bound of O(log3 n) with greedy routing.

1 Introduction

As large-scale datasets of social interactions have become widespread, computer scientists have
begun to explore social networks, graphs in which nodes representing people are connected by edges
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representing friendships. Social networks are a particularly appealing domain for interdisciplinary
application of computational thinking: a graph-theoretic, algorithmic approach can lend interesting
insight to questions traditionally in the domain of the social sciences. The well-known small-
world phenomenon—first observed explicitly by Stanley Milgram’s ingenious experiments [21], in
which people demonstrated an ability to collectively construct short chains of acquaintances to
pass a message to a specified target personin the social network—is a marked example [15]. A key
observation of Jon Kleinberg [12, 13], made some thirty years after Milgram’s original experiment,
is that these results are at heart algorithmic: people are able to use some sort of distributed
algorithm to construct short paths through the social network, with each node having only limited,
local information about the friendships in the network. Kleinberg gave a simple model that suffices
to produce a navigable small world. Start from a k-dimensional grid of people, with k = Θ(1), where
we view proximity in the grid as corresponding to similarity in geographic location, occupation, or
some other attribute. Connect each person to 2k local neighbors, her immediate neighbors in the
grid. Also endow each person u with one long-range link, chosen randomly so that Pr[u → v] ∝
d(u, v)−β , where d(u, v) is the Manhattan distance between u and v and β ≥ 0 is a parameter of
the model. (The presence of additional long-range links does not substantially affect the results.)
Kleinberg studied greedy routing—to route a message from s to t, person s forwards the message to
the friend of s who is closest in lattice distance to t—and showed that this simple algorithm finds
paths of expected length O(log2 n) in n-person networks when β = k, and of length nΩ(1) when
β 6= k. A Ω(log2 n) bound on the expected length of the path found by greedy routing when β = k
has also been shown [4, 20].

These results have subsequently been extended and adapted to situations in which the under-
lying network is not a grid, but is instead, for example, a tree [14] or a network that has low
treewidth [8], bounded growth rate [6, 7], or low doubling dimension [24]. But an important fea-
ture present in the real world is lacking in almost all of these models: whatever one chooses as
the space in which to measure similarity, people are not uniformly distributed among the points
in this space(geographic locations, occupations, etc.). The group-structure model [14] can handle
differential population density, as can rank-based friendship [16, 18]. We focus on the latter, which
has been shown empirically to be a close match for friendship patterns in a real large-scale online
social network [18]. The model is still based on an underlying similarity measure, but an arbitrary
number of people can live at each point. Define the rank of a person v with respect to u as the
number of people who live at least as close to u as v does. Under rank-based friendship, we generate
long-range links probabilistically using rank instead of distance: a person u chooses a long-range
link v so that Pr[u → v] is proportional to the rank of v with respect to u. (It is worth noting that
rank-based friendship implicitly handles the dimensionality of the underlying similarity measure: in
a k-dimensional grid with Θ(1) population at each point, we have ranku(v) = Θ(d(u, v)k), matching
the navigable distribution that explicitly involves k in Kleinberg’s distance-based setting.)

In joint work of Ravi Kumar, Andrew Tomkins, and the third author [16], greedy routing was
shown to perform well in rank-based social networks, in the following sense. In a Θ(1)-dimensional
grid with arbitrary positive population at every point and with total population n, the greedy
algorithm finds a path of expected length O(log3 n) from an arbitrary source to the point of a
target chosen uniformly from the population. In fact, these results were shown in a much more
general setting [16]: if similarity is measured by proximity in an arbitrary metric space, then
Greedy finds a path of expected length O(log n · log2 ∆ ·2O(α)) to a randomly chosen target, where
n is the population size; ∆ is the distance between maximally distant people; and α is the doubling
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dimension of the metric space, a combinatorial measure of the implicit dimensionality of the space.
Formally, the doubling dimension of a metric space is the smallest α such that every ball of radius
r can be covered by 2α balls of radius r/2(see [2, 10, 24], e.g.).

Our contributions. The theorem for rank-based networks with variable population densities re-
stricted to k-dimension grids under Manhattan distance says that Greedy finds a path of expected
length O(log3 n) to a randomly chosen target. This result is weaker than Kleinberg’s theorem in
two ways: there is an additional O(log n) factor in the path length; and there is “in expectation
for a random target” in place of “for any target.” (These negatives are, of course, counterbal-
anced by the increased generality of the model, which can handle essentially arbitrary population
distributions.)

In this paper, we improve the upper bound on expected path length to O(log2 n) in k-dimensional
grids with arbitrary population densities, closing the gap with Kleinberg’s analysis of the uniform-
population case. We achieve this bound with the cautious-greedy algorithm, a variation on greedy
routing that we introduce. Intuitively, the greedy algorithm can get into trouble in variable-density
networks as follows. Imagine a person s who only lives near points with unit population. Suppose
that s has a friend u so that d(u, t) = d(s, t)−ε but the jump from s to u “overshoots” the target t.
If there is a city with massive population near u (but farther from t than u is), then s may be
making a mistake by choosing u as the next step in the chain: because u is in the “shadow” of
the city, then we have Pr[s → t] � Pr[u → t]. Indeed, the same is true from u for all points close
to t, and showing that Greedy is making progress at every step is difficult. (This difficulty seems
intuitive: if s and t live 60 and 25 miles due west of New York City, respectively, then overshooting
t from s by jumping to a friend in Manhattan seems like a bad idea, because the chain is now stuck
inside New York’s “basin of attraction.”) CautiousGreedy differs from Greedy in that it con-
servatively takes local links unless there is a long-range link that halves the distance to the target,
in which case it follows that link. We are able to show that, in rank-based social networks with
arbitrary population distributions derived from k-dimensional grids under Manhattan distance, the
expected length of the CautiousGreedy(s, t) path for a randomly chosen target t is O(log2 n).
We also show that this bound is tight in the 1-dimensional case.

The result for k-dimensional grids is a corollary of our main theorem, which shows that cautious-
greedy routing performs well in expectation for social networks with similarity measures derived
from arbitrary metric spaces. As usual, the performance of the algorithm depends on certain
properties of the metric space, including the aspect ratio ∆ and the doubling dimension α. We also
uncover a new quantity ρ ∈ (0, 1] characterizing metric spaces, intuitively measuring the smallest
“width” of each direction leaving a point in the space, that is crucial to our analysis. By analogy
to the corresponding concept in photography, we call ρ the depth of field of the metric space. More
precisely, the depth of field is the minimum over points s and t of the ratio r(s, t)/d(s, t), where
r(s, t) is the maximum radius of a ball B around t so that a shortest path from s to every point
in B has the same first step. In networks with large depth of field (e.g., Manhattan distance in k-
dimensional grids), we can prove much better routing bounds than in networks with small depth of
field (e.g., Euclidean distance in k-dimensional grids). Our main result is that CautiousGreedy

finds a path of expected length O(log n · log ∆ · (cρ)−α) for constant c, improving by a O(log ∆)
factor the bound from [16] in networks with bounded ρ and α.

3



Other related work. Although Greedy is the most commonly analyzed decentralized social-
network routing algorithm, there has been significant work on other algorithms as well. Typically—
and in contrast to CautiousGreedy, which still uses only completely local information in con-
structing the path—these algorithms endow individuals with additional structural information
about the network, such as awareness of friend’s friends (e.g., [9, 17, 19, 20, 24]). Other studies
of the navigability of social networks and, in particular, good local-information algorithms for
navigation have been performed, largely focusing on simulations and empirical studies of real net-
works (e.g., [3, 5, 23, 25]). There has also been recent relevant work in metric embeddings in which
the underlying metric space can be simplified without large distortion of distances between nodes
that are close together [1] and in designing peer-to-peer systems where node distributions are
nonuniform in keyspace [11].

2 Depth of Field in Metric Spaces

Consider a metric space M = 〈X, d〉. For convenience, throughout the paper we scale every metric
space so that minx6=y d(x, y) = 1. We first mention a few standard notions that we use throughout:

• Let ∆ := maxx,y∈X d(x, y) denote the aspect ratio of the metric space.
• Let Br(x) := {y : d(x, y) < r} denote the open radius-r ball around x ∈ X.
• Let α denote the doubling dimension of the metric space: α is the smallest value such that,

for every r > 0, every set Y ⊆ X of radius 2r can be covered by at most 2α subsets of X,
each of radius r.

We will need to develop a notion that quantifies the following intuition: if a point s is far away from
a point t, then making a small step closer to t from s should bring one closer to points near t as
well. We will define the depth of field of the metric space to quantify the notion of “near t.” (Our
use of this term is inspired by the same term in photography: for a camera focused on a point t,
“depth of field” refers to the range of points around t that are also in focus. A large depth of field
means that many points near t are also in focus.) Let r > 0 denote the largest radius so that some
point u is on a shortest path from s to every point in the ball Br(t). The farther apart s and t
are, the larger one would expect r to be; thus, we will be concerned with the ratio between r and
d(s, t).

Definition 2.1 (Depth of field). For arbitrary points s, t, u ∈ X with s /∈ {t, u}, define ru(s, t)
as the maximum value such that

∀z ∈ X d(z, t) < ru(s, t) =⇒ d(s, z) = d(s, u) + d(u, z).

We define the depth of field of s and t as ρ(s, t) := maxu6=s ru(s, t)/d(s, t). The depth of field of
the metric space M is ρ(M) := mins6=t ρ(s, t).

Lemma 2.2. For any metric space M, we have 0 < ρ(M) ≤ 1.

Proof. Consider arbitrary distinct s, t. For sufficiently small r, the ball Br(t) is just {t}. So
rt(s, t) > 0, and ρ(s, t) > 0. On the other hand, we have s ∈ Br(t) for r > d(s, t). Thus
ru(s, t) ≤ d(s, t) for every u. Thus 0 < ρ(s, t) ≤ 1.
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One can give similar intuitive descriptions of the depth of field and the doubling dimension of a
metric space: they both aim to quantify the number of distinct directions emanating from a point
in the metric space. However, they measure “number of distinct directions” in different ways.
Informally, doubling dimension counts something like the number of directions one can go from s;
depth of field counts something like the “width” of the narrowest of these directions.

Denote depth of field and doubling dimension by ρ and α, respectively. In what follows, we will
find algorithms whose running times depend exponentially on α and 1/ρ, so we are most interested
in metric spaces where both α and 1/ρ are bounded. To clarify the relationship between these
quantities, we note metric spaces where one or the other or both of these quantities is/are small:

• a k-dimensional grid under Manhattan distance has ρ = 1/k and α = Θ(k).
• a 2-by-n grid under Euclidean distance has ρ = 1/n and α = Θ(1).
• a metric space in which distances are given by shortest paths in an n-node star graph (a tree

with n − 1 leaves) has ρ = 1 and α = log n.

3 Social Networks, Rank-based Friendship, and Routing Algo-

rithms

A social network is a directed graph 〈P,E〉, where a node represents a person and an edge denotes
a friendship between its endpoints. Let Γ(u) denote the friends of u ∈ P . Our general framework
consists of some attributes of the people in P , with friendships derived in some way from these
attributes. (We use terminology suggestive of a geographic interpretation, but other attributes are
equally valid in this setting.) The attributes will be globally known to all people, but the friendships
will be known only to the people involved. As a formal encoding of this framework, we consider
the following structures throughout:

• a finite set L of points;
• a distance metric d : L × L → R

≥0 on the points (so 〈L, d〉 is a metric space);
• a finite set P of people; and
• a location function loc : P → L so that loc(u) is the point where u ∈ P lives.

We will permit ourselves to write an element u of P in contexts where an element of L is expected,
with the understanding that u is shorthand for loc(u). For ` ∈ L or L′ ⊆ L, let pop(`) := |{u ∈
P : loc(u) = `}| and pop(L′) :=

∑

`∈L′ pop(`) denote the population of a point or set of points.
Write n := pop(L) = |P | for the total population. We will also impose a condition called neighbor
connectivity [16] on the social networks that we consider. For every p, q ∈ P with loc(q) 6= loc(p), we
require that p have a friend in some location ` such that d(loc(p), `)+d(`, loc(q)) = d(loc(p), loc(q)).
(Formally, if Gd is the minimal graph on L where shortest paths correspond to the metric d, then
p must have a friend in every neighbor of loc(p) in Gd.) Among other things, this guarantees that,
for people s, t ∈ P with loc(s) 6= loc(t), person s has a friend u with d(s, t) > d(u, t).

3.1 Rank-based Friendships

For two people u, v ∈ P , the rank of v with respect to u is the number of people w ∈ P who are
closer to u than v, so ranku(v) := |{w ∈ P : d(u,w) < d(u, v)}|. For concreteness, we will specify
that ranku(u) := 1 for every person u ∈ P . Ties in distance are broken using a canonical ordering
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on P , so for any person u ∈ P and any rank i ∈ {1, . . . , n}, there is exactly one person v such that
ranku(v) = i. A rank-based friendship for a person u ∈ P is one generated as follows: a friend v is
chosen randomly for u according to the probability distribution Pr[u links to v] ∝ 1/ranku(v). Let
Hn = Θ(log n) denote the nth harmonic number. By normalization, we have the following:

Pr[a rank-based link from u is u → v] = 1/(Hn · ranku(v)). (1)

We endow each person with ≥ 1 rank-based friendship, chosen according to (1), along with an
arbitrary set of local neighbors satisfying neighbor connectivity.

3.2 Decentralized Routing Algorithms

Given source and target individuals s, t ∈ P , a routing algorithm seeks a path σ = 〈u0, u1, . . . , uk〉
from s = u0 to uk with loc(uk) = loc(t) in the graph 〈P,E〉. (We do not model routing within points
in this paper.) A decentralized algorithm computes the next step ui+1 from the current person ui

without taking the entire graph 〈P,E〉 as input: only the edges in E incident to ui are available
to the algorithm. (Full information about L, d, P , and loc is available to the algorithm; thus, for
example, a person s can compute ru(s, t) for any u, t in the sense of Def. 2.1.) We focus on two
particular decentralized algorithms. Under the well-studied greedy algorithm, the current person u i

simply chooses her friend who is closest to t as the next step in the path. We also introduce and
analyze the cautious-greedy algorithm, which is a conservative variant of Greedy that refuses to
take long jumps that do not make significant progress (specifically, by halving the distance) to the
target, instead opting for a “safe” local link.

CautiousGreedy(s, t):

(halving step.) Let u := argminu∈Γ(s)d(u, t). If d(u, t) ≤ d(s,t)
2 , forward to u.

(nonhalving step.) Else forward to argmaxu∈Γ(s)ru(s, t) in the sense of Def. 2.1.

Lemma 3.1. Suppose the network is neighbor connected and let ρ be the depth of field of 〈L, d〉.
If CautiousGreedy(s, t) takes a nonhalving step from s to w, then d(s, z) = d(s, w) + d(w, z) for
every z such that d(z, t) < ρ · d(s, t).

Proof. Let v∗ be the person so that rv∗(s, t) is maximized, so that ρ ≤ ρ(s, t) = rv∗(s, t)/d(s, t)
and, for every z such that d(z, t) < rv∗(s, t), we have

d(s, z) = d(s, v∗) + d(v∗, z). (2)

Let Gd denote the minimal graph where shortest paths correspond to the metric d, and let ΓG(s)
denote the neighbors of s in Gd. By definition of neighbor connectivity, there is a local link from s
to every neighbor of s in Gd. In particular, there is a link from s to a u ∈ ΓG(s) so that

d(s, v∗) = d(s, u) + d(u, v∗), (3)

because shortest paths in Gd correspond to distances under d. We claim, then, that ru(s, t) ≥
rv∗(s, t). For every z such that d(z, t) < rv∗(s, t):

d(s, z) = d(s, v∗) + d(v∗, z) by (2)

= d(s, u) + d(u, v∗) + d(v∗, z) by (3)

≥ d(s, u) + d(u, z) d(u, v∗) + d(v∗, z) ≥ d(u, z) by triangle inequality

≥ d(s, z). d(s, u) + d(u, z) ≥ d(s, z) by triangle inequality
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Because d(s, z) ≥ d(s, u) + d(u, z) ≥ d(s, z) for every z such that d(z, t) < rv∗(s, t), we in fact have
that d(s, z) = d(s, u)+d(u, z) for every such z, and therefore ru(s, t) ≥ rv∗(s, t). By the assumption
of neighbor connectivity, then, person s has a link to a person u with ru(s, t) ≥ rv∗(s, t) ≥ ρ ·d(s, t).
Therefore the person w to whom s forwards must have rw(s, t) ≥ ru(s, t) ≥ ρ · d(s, t).

As a corollary, we note that both Greedy and CautiousGreedy make strict progress towards
their targets in every step. Among other things, this fact guarantees that every person is encoun-
tered only once by a run of the algorithm. Thus we can invoke the principle of deferred decisions
in our analysis (see [22]): we proceed as if the long-range links of each person are generated only
once the algorithm encounters that person.

4 An Upper Bound for Cautious Greedy Routing

Consider fixed L, d, P, loc as defined previously. Let ρ and α, respectively, denote the depth of
field and doubling dimension of the metric space 〈L, d〉. We will be interested in the length of the
path found by CautiousGreedy(s, t), where s ∈ P is arbitrary and t ∈ P is chosen uniformly
at random from the population. Most of our effort will be focused on analyzing the number of
steps required to halve the distance to the target—or, more precisely, to reach a person u such that
d(u, t) < 2i−1 from a source s when t is chosen randomly from {t : d(s, t) < 2i}.

Halving the distance to the target

Fix a source person s and some integer i ∈ Z
≥1. Let B := B2i(s) denote the ball of radius 2i

around s. It will turn out to be handy to fix notation for D := B2i(s) − {z : d(s, z) ≤ 2i−1}, the
“donut” formed by removing the (closed) ball of radius 2i−1 centered at s from B.

We will use a cover of B by a small (in terms of α and 1/ρ) set of balls of radius ρ · 2i−2. This
radius is chosen carefully to ensure the following: whenever we take a nonhalving step towards
target t from a node u with d(u, t) ≥ 2i−1, we have stepped along a shortest path to every node in
the ball containing t that is included in the cover.

Lemma 4.1. There is a set Q ⊆ B where |Q| ≤ (8/ρ)α and
⋃

`∈Q
Bρ·2i−2(`) ⊇ B.

Proof sketch. By repeatedly applying the definition of doubling dimension, we find that we can
cover B with a set of at most 2(3+log

2
(1/ρ))α = (8/ρ)α balls of radius at most ρ · 2i−2 that cover B.

We let Q denote the set of their centers.

Throughout this section, fix Q to denote this set, so that, for every u ∈ B, there exists a point q ∈ Q

such that d(u, q) ≤ ρ · 2i−2. Write q(u) := argminq∈Qd(q, u), and write C(u) := B ∩ Bρ·2i−2(q(u)).
Notice that u ∈ C(u).

Lemma 4.2. Let t ∈ B be arbitrary. Suppose CautiousGreedy(s, t) arrives at node u with
d(u, t) > 2i−1. Let v ∈ C(t) be arbitrary. Then Bd(u,v)(u) ⊆ B.

Proof by induction on the number of steps taken by CautiousGreedy(s, t). If no steps have been
taken by CautiousGreedy(s, t), then the claim is trivial, because u = s and C(t) ⊆ B. Oth-
erwise, suppose that u was reached by a step from a node w. Notice that every step that
CautiousGreedy(s, t) has taken before reaching u must be nonhalving: otherwise, there was
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a halving step from some u∗ with d(s, t) ≥ d(u∗, t) to a neighbor v∗ with d(v∗, t) ≤ d(u∗, t)/2; but
then u would not satisfy the conditions of the lemma, as d(v∗, t) ≤ d(u∗, t)/2 ≤ d(s, t)/2 ≤ 2i−1.
Observe that d(v, t) < ρ · 2i−1:

d(v, t) ≤ d(v, q(t)) + d(q(t), t) < (ρ · 2i−2) + (ρ · 2i−2) = ρ · 2i−1.

by the triangle inequality and the fact that v, t ∈ C(t) ⊆ Bρ·2i−2(q(t)) by the definition of v and C(t).
We also have that d(w, t) > d(u, t) > 2i−1 by assumption. Therefore, because we took a nonhalving
step from w to u, Lemma 3.1 implies that d(w, v) = d(w, u) + d(u, v), because d(v, t) < ρ · 2i−1

implies d(v, t) < ρ · d(w, t). To complete the proof of the lemma, consider a generic point x. We
show that x ∈ Bd(u,v)(u) =⇒ x ∈ B:

x ∈ Bd(u,v)(u) ⇐⇒ d(x, u) < d(u, v)

⇐⇒ d(x, u) < d(w, v) − d(w, u) (d(w, v) = d(w, u) + d(u, v) as above)

=⇒ d(x,w) < d(w, v) (d(x,w) ≤ d(x, u) + d(u,w) by the triangle inequality)

⇐⇒ x ∈ Bd(w,v)(w)

=⇒ x ∈ B (inductive hypothesis).

Thus Bd(u,v)(u) ⊆ B, as desired.

For an arbitrary target t ∈ B, let Xt be a random variable denoting the number of steps that
CautiousGreedy(s, t) takes before it reaches a person u with d(u, t) ≤ 2i−1. Note that, for
t ∈ B − D, we have Xt = 0: the node s itself satisfies the desired condition for u. For t ∈ D, it
suffices to reach a node u ∈ C(t): we have

d(u, t) ≤ d(u, q(t)) + d(q(t), t) < ρ · 2i−2 + ρ · 2i−2 = ρ · 2i−1 ≤ 2i−1

by the triangle inequality, the definition of C(t) and q(t) and the fact that t ∈ C(t), and Lemma 2.2.
Note CautiousGreedy(s, t) will take a halving step to follow a link to any node in C(t) if d(s, t) >
2i−1, as d(u, t) < 2i−2 < d(s, t)/2; thus it suffices to compute the probability that a node has a link
to C(t).

Lemma 4.3. For t ∈ D, we have E[Xt] ≤ Hn · pop(B)/pop(C(t)).

Proof. Suppose CautiousGreedy has generated a partial path to t and that u is the last node on
that path. If d(u, t) ≤ 2i−1, we are done, so consider a node u such that 2i−1 < d(u, t) ≤ d(s, t) ≤ 2i,
as every step of CautiousGreedy moves closer to the target t. The probability that a rank-based
link from such a node u goes into C(t) is

Pr[u → C(t)] =
∑

v∈C(t)

1

Hn · ranku(v)
≥

∑

v∈C(t)

1

Hn · pop(B)
=

pop(C(t))

Hn · pop(B)
(4)

by (1) and Lemma 4.2. Thus at every step while CautiousGreedy is farther than 2i−1 from
the target, the probability of the current node having a rank-based link to C(t) is given by (4).
Thus the expected number of steps until CautiousGreedy either reaches a point within distance
2i−1 of t through nonhalving steps or reaches a person in C(t) via a halving step is no larger
than the expected waiting time for success in geometric random process with success probability
pop(C(t))/(Hn · pop(B)). The claim follows.
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Lemma 4.4. Let t be a target chosen uniformly at random from B. Then the expected length of
CautiousGreedy(s, t) before it arrives at some node u with d(u, t) ≤ 2i−1 is at most |Q| · Hn,
where the expectation is taken both over the random construction of the network and over the
random choice of t.

Proof. Let X be a random variable denoting the length of the path found by CautiousGreedy(s, t)
before it arrives at a node u with d(u, t) ≤ 2i−1 when t is drawn uniformly at random from B.
Then

E[X] = E[X | t ∈ D] · Pr[t ∈ D | t ∈ B]

+ E[X | t ∈ B − D] · Pr[t ∈ B − D | t ∈ B]

= E[X | t ∈ D] · Pr[t ∈ D | t ∈ B] (t ∈ B − D is done in zero steps)

=

[

∑

t∈D

E[Xt] ·
1

pop(D)

]

·
pop(D)

pop(B)

≤
∑

t∈D

Hn · pop(B)

pop(C(t))
·

1

pop(D)
·
pop(D)

pop(B)
(Lemma 4.3)

= Hn

∑

t∈D

1

pop(C(t))

= Hn

∑

q∈Q

pop(C(q))

pop(C(q))
( 1
pop(C(q)) is summed once for each person in C(q))

= Hn · |Q|.

Reaching the target

Lemma 4.4 establishes that, for a fixed source s and a fixed i, the expected number of steps for
CautiousGreedy to get to within distance 2i−1 of a target chosen uniformly at random from
the ball of radius 2i around s is small as long as |Q| is small. By repeated invocations of this
lemma, we can establish a polylogarithmic upper bound on the expected length of the path found
by CautiousGreedy:

Theorem 4.5. Fix a neighbor-connected rank-based social network with population size n, depth
of field ρ, doubling dimension α, and aspect ratio ∆. Let s be an arbitrary source person, and let
t be a target person chosen uniformly at random from the population. Then the expected length of
the CautiousGreedy(s, t) path from s to loc(t) is O(log n · log ∆ · (8/ρ)α), where the expectation
is taken over both the random construction of the network and the random choice of t.

Proof. Let Yu,i be a random variable that denotes the number of people that CautiousGreedy(u, t)
encounters before it reaches a person within distance 2i−1 of a target t chosen uniformly at random
from B2i(u). For any u and i, by Lemma 4.4, we have E[Yu,i] ≤ |Q| · Hn ≤ (8/ρ)α · Hn. Choose a
target t uniformly at random from the population. For any u and any i, conditioned on d(u, t) < 2i,
the target t is a uniformly chosen person from B2i(u). Thus, starting from any source node ui,
conditioned on the distance to the target being at most 2i, the expected number of steps before
CautiousGreedy reaches a node within distance 2i−1 of the target is O(log n · (8/ρ)α). The
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total length of the CautiousGreedy(s, t) is at most the number of steps required to reduce the
distance to the target from ∆ down to 1/2—i.e., O(log ∆) iterations of this process. By linearity
of expectation and the above bound, the theorem follows.

5 A Tight Lower Bound on Cautious Greedy

We have shown that Et[|CautiousGreedy(s, t)|] = O(log2 n) in networks with constant doubling
dimension, constant depth of field, and aspect ratio that is polynomial in the population size. In
this section, we exhibit a network with α = Θ(1), 1/ρ = Θ(1), and ∆ = n such that the expected
length of the path CautiousGreedy(s, t) for a randomly chosen t is Ω(log2 n). Our results rely
heavily on a lower bound proven by Martel and Nguyen [20] on Greedy: in a k-dimensional
grid with Pr[u → v] ∝ d(u, v)−k, for any source–target pair 〈s, t〉 with d(s, t) > cn, the expected
length of Greedy(s, t) is Ω(log2 n), where a dependence on the constant c is hidden by the Ω(·).
Because rank-based link probabilities differ by only a constant factor from Pr[s → t] ∝ d(s, t)−k

in uniform-population grids [16], we need only connect CautiousGreedy to Greedy to derive a
lower bound.

Consider a uniform-population rank-based social network Rn
uniform where the underlying metric

space is a ring (that is, we take L = {0, 1, . . . , n} and d(i, j) = min(|i − j|, |j − i|) and exactly
one person living at each point). For a target person t, write gs(t) := E[|Greedy(s, t)|] and
cs(t) := E[|CautiousGreedy(s, t)|] to denote the expected length of the paths found by the two
algorithms to a particular target t. (Here the expectation is taken only over the random choices of
the rank-based friendships.)

Lemma 5.1. In Rn
uniform , (i) if n/4 ≥ d(s′, t) ≥ d(s, t), then gs′(t) ≥ gs(t); and (ii) if d(s, t) ≤ n/4,

then cs(t) ≥ gs(t).

(The proofs, both by induction on d(s, t), are omitted due to space constraints; the proof of claim
(ii) relies on claim (i).)

Theorem 5.2. In Rn
uniform , for any source s and a target t chosen uniformly at random from the

population, CautiousGreedy(s, t) has expected length Ω(log2 n).

Proof. For any constant c ∈ (0, 1/4), there are Ω(n) people t with cn < d(s, t) ≤ n/4. Thus with
Ω(1) probability, the random target t satisfies cn < d(s, t) ≤ n/4. For any such target t, the
expected length of CautiousGreedy(s, t) satisfies cs(t) ≥ gs(t) = Ω(log2 n) by Lemma 5.1(ii) and
the aforementioned theorem of Martel and Nguyen [20], trivially adapted to handle the differences
between the distance-based and rank-based models, which can affect probabilities by a constant
factor. For a constant fraction of the choices of t, then, we have an Ω(log2 n) bound on the expected
length of CautiousGreedy(s, t).

6 Future Directions

We have shown that, in rank-based networks, cautious-greedy routing performs well, in expectation
for a randomly chosen target, as long as the underlying metric space has small aspect ratio, small
doubling dimension, and large depth of field. In particular, we have been able to improve by a
O(log ∆) factor the results on Greedy [16]. But two natural questions remain:
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• Is the expected length of the path found by Greedy to a randomly chosen target also short,
say O(log2 n) in a Θ(1)-dimensional grid under Manhattan distance? (Or can CautiousGreedy

be much better than Greedy?)

• Do either Greedy or CautiousGreedy achieve short paths—say of length O(logΘ(1)(n +
∆) · f(ρ, α))—for an arbitrary target (in expectation only over the random construction of
the network)?

In fact, these questions appear to be intimately connected. In Sect. 1, we gave an example in
which Greedy appears to hurt itself by taking a long-range link that brings it very close to a
“distracting” point of high population, which attracts a large fraction of the rank-based links from
people that Greedy subsequently encounters. But it is not too hard to see that Greedy “escapes”
from the shadow of a distracting point in polylog(n) steps, because there is a reasonable probability
of increasing one’s distance from the distraction by a factor of 3/2 at any step. However, it is an
open question as to whether some adversarial construction of a set of distracting points of various
sizes might cause a particular target to be hard to reach efficiently. This question appears to be
closely related to the question of whether the distracting points that Greedy may encounter in
fact substantially slow down its performance. (For example, a natural analogue to Lemma 4.2 does
not appear to hold for Greedy unless the ball B is expanded, as was done in previous analysis [16],
which had the carryover effect of the extra logarithmic factor.)

It would also be interesting to better understand the role of the depth of field of the metric
space. It is known, for example, that for doubling dimension α = ω(log log n), there is no decentral-
ized routing algorithm that achieves polylogarithmic routing time for all pairs of nodes [10]. The
interaction between doubling dimension and depth of field is an interesting direction for further
study—for example, is there a similar lower bound in networks with low doubling dimension but
very small depth of field?
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