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Abstract

People learn and use complex sequential actions on a daily
basis, despite living in a high-dimensional environment and
body. Sequential action learning is sometimes studied in cog-
nitive psychology using button-pressing tasks such as Nissen
and Bullemer’s (1987) serial respone time (SRT) task. How-
ever, the SRT task only measures the speed of button presses,
neglecting the rich–and difficult to control–trajectory of the
arm, which can show predictive movements and other contex-
tual effects. In this study, we evolve neural networks to learn
to control a robot arm to carry out a mouse-based SRT task un-
der conditions of differing prediction uncertainty. We replicate
behaviors found in a recent human experiment, and explore
ramifications for human sequence learning.
Keywords: sequential action learning; neural networks; robot
arm control; evolutionary optimization

Introduction
Sequential action is one of the cornerstones of everyday hu-
man action. Most of our everyday activities, such as coffee
making or driving a car, can be regarded as complex sequen-
tial actions, governed by a structured hierarchy or grammar,
and yet flexibly adapted under changing circumstances. How
humans perform these sequential actions has been the subject
of study for at least a century. Sequential action can be rep-
resented on a symbolic (what will my next action be?) level,
as well as a subsymbolic, sensorimotor (what motor param-
eters should I use?) level (Yamashita & Tani, 2008). Inter-
action effects between the two levels of representation have
been observed, and integration between the two is necessary
to produce smooth sequential action. Due to their embedded-
ness (i.e. an implementation in a physical environment), both
virtual and real robots–humanoid or not–are suitable subjects
for developing and investigating models of behavior in which
interaction with the environment is important (see Atkeson et
al. (2000) for an extensive overview). Robot paradigms have
been successfully used to investigate psychological phenom-
ena that require such embeddedness like hand-eye coordina-
tion (Kuperstein, 1988), object handling (Ito, Noda, Hoshino,
& Tani, 2006), and imitation learning (Schaal, 1999). Used in
the proper way, they hold promise to investigate the relation
between symbolic planning of actions and the subsymbolic
execution of these actions. Modern multi-action robot plan-
ning algorithms such as DARRT require proposing and eval-

uating action plans across the entire state-space, from the first
to the last action (Barry, Hsiao, Kaelbling, & Lozano-Pérez,
2013). Although these can run sufficiently quickly on mod-
ern hardware for action sequences of a few steps, the rapidly-
exploring random tree algorithm typically used by these plan-
ners takes little cue from studies of human action planning
and has a long-tailed distribution of computation time, with
no guaranteed rate of convergence. The aim of this study is
to investigate to what degree an optimized robot model’s be-
havior matches human behavior in a sequential learning task,
and to the extent that they match, propose new human-like
strategies for multi-action robot planners.

Optimization of motor control
The choice of specific motor parameters used in the execu-
tion of motor commands is influenced by several factors and
constraints. A good example is the end-state comfort effect
(Cohen & Rosenbaum, 2004), in which the grasp location
of an object is a function of the expected end state of the
arm. People are observed to choose a grasp that optimizes
the comfort of the arm’s end state. For example, if one is
reaching to right a cup that is upside-down, one will first in-
vert one’s hand (thumb-down) before grasping the cup. Other
optimization is seen in the form of contextual lip rounding
(Daniloff & Moll, 1968), where the lips are rounded in prepa-
ration for pronouncing the /u/ sound well in advance, and
bending of mouse trajectories when sequentially reaching for
stimuli with a mouse cursor by predicting its future location
(Kachergis, Berends, de Kleijn, & Hommel, 2014; de Kleijn,
Kachergis, & Hommel, in press).

Serial response time tasks
In such a trajectory serial response time task, four squares
in the corners of a computer screen are visible, and partici-
pants are asked to move the mouse cursor as quickly as possi-
ble to the square that changes color. Participants are not told
that the squares change color in a deterministic sequence of
length 10. However, speed-up over time compared to a ran-
dom sequence suggests that the sequence is learned, at least
implicitly. Furthermore, during the course of the experiment
differences in strategy seem to arise. Dale, Duran, and More-



head (2012) used a trajectory serial response time task similar
to Kachergis et al. (2014), with different levels of sequence
complexity1. They distinguished three types of movement
during the inter-stimulus interval: (1) no movement, waiting
for the next stimulus to appear; (2) actively moving toward
the next predicted stimulus; and (3) moving the mouse cur-
sor toward the center of the screen. As sequence complex-
ity decreased, participants were found to make larger predic-
tive movements (i.e. movements toward the next stimulus, as
measured by distance-to-target at target onset) and be more
likely to have explicit sequence knowledge.

Centering strategy
An interesting effect was visible in participants not making
predictive movements or waiting for the next stimulus. These
participants were observed to move their mouse cursor to the
center of the screen, equidistant from all stimuli. The au-
thors mention that “even participants with low pattern aware-
ness engaged in this form of behavior” (p. 204). However,
preliminary analyses of earlier collected data by the authors
show that it is specifically this group without explicit se-
quence awareness that engages in this strategy. Duran and
Dale (2009) agree with this finding, and report that this cen-
tering strategy is likely employed to compensate for (initial)
lack of sequence knowledge, making it impossible to accu-
rately predict the next target. In those circumstances, moving
the mouse cursor to a position equidistant to all alternatives
would be an effective strategy.

However, it remains unclear whether implicit or explicit se-
quence knowledge drives this behavior, and if the two forms
of knowledge interact. On the one hand, participants may
have acquired sequence knowledge but are unable to verbal-
ize the sequence. On the other hand, participants may well
think they have acquired knowledge of the sequence, but may
simply be wrong. Analyses of earlier collected data shows
that the latter group is quite small, making it difficult to in-
vestigate behaviorally.

The current study
In the current study, we directly manipulated prediction qual-
ity in a sequential reaching task with a virtual robot hand
controlled by an artificial neural network. The task was sim-
ilar in nature to the task described by Dale et al. (2012) and
Kachergis, Berends, de Kleijn, and Hommel (2016): reach-
ing for targets that appeared or changed color in a repeating
sequence of locations.

In any modeling problem using artificial neural networks,
the connection weights between the artificial neurons (or
units) have to be optimized. In other words, the goal is to
find those connection weights that cause the artificial agent
to produce the behavior that most closely approaches the re-
quired behavior as measured by a fitness or cost function de-
termined by the researcher. One of the most popular methods

1More specifically, a measure of grammatical regularity was
used inverse to the first-order entropy of the sequence, as used in
(Jamieson & Mewhort, 2009).

for determining suitable connection weights is backpropaga-
tion (Rumelhart, Hinton, & Williams, 1986). The backprop-
agation update algorithm operates when the network is pre-
sented with an input vector, after which the output produced
by the network is compared to the desired output, and net-
work weights are then updated according to their error value,
starting with the output units and working back through the
network.

Evolutionary algorithms such as neuroevolution
(e.g. Angeline, Saunders, and Pollack (1994)) can find
suitable network weights not by directly calculating an
error measure for each input-output pair presented to the
network, but by quantifying the performance of agents
controlled by the network. In its most simple form, the
method of neuroevolution generates a large number of agents
with randomly initialized networks and quantifies how well
they perform on the required task during a fixed period
of time. Next, the best performing agents are allowed to
“reproduce”, and are copied to the following generation
in a slightly modified way (e.g. by adding random noise
to the connection weights). In subsequent generations,
this procedure is repeated until some predefined fitness
criterion is reached. Neuroevolution is considered an effi-
cient approach to solving reinforcement learning problems.
Past studies have shown neuroevolution to be faster and
more efficient than reinforcement learning methods such
as Q-learning on several tasks, including robot arm control
(Moriarty & Miikkulainen, 1996; Moriarty, 1997; Stanley
& Miikkulainen, 2002). Evolutionary algorithms have been
used to simulate a wide range of psychological phenomena,
ranging from reciprocity (André & Nolfi, 2016) to selective
attention (Petrosino, Parisi, & Nolfi, 2013) and category
learning (Morlino, Giannelli, Borghi, & Nolfi, 2012).

Method
Task design
The task used for the virtual robots was analogous to the task
described by Kachergis et al. (2016), although the sequence
itself was simplified (see Figure 1. It was designed as an envi-
ronment of size 50 × 50 represented as floating-point values.
Over the course of one run of 500 discrete time steps, target
stimuli appeared sequentially in one of the four corners of
the environment (distance 10 from the environment border),
following a simple repeating 1-2-3-4 sequence. In one condi-
tion, networks were provided with accurate information about
the next stimulus. In a second condition, the information was
not predictive of the next stimulus. In a third condition, no
information about the next stimulus was provided to the net-
work. The exact implementation is described below under
Network design.

A virtual robot arm was to touch the target (come within a
square of size 6×6 centered on the target) as quickly as pos-
sible. After touching a target, no targets were visible for 20
time steps as an inter-stimulus interval (ISI), after which the
next target would appear. Every run (one network-controlled



1 2

4 3

6

50

50

10
10

6
current 
target

agent path

Figure 1: The simulated environment in which the arm
was tasked with sequentially reaching locations 1-4, with a
schematic perfectly-performing agent.

virtual robot arm performing the task for 500 time steps), the
starting location was initialized to the center of the screen.
During each run, the amount of targets touched and the to-
tal distance moved was calculated. Also, to encourage fast
movement, a reward with decaying value was associated with
each target. Rewards were initialized to value 100, decreas-
ing by 1 with each time step. After completion of the run,
network fitness was defined as

fitness= touched stimuli+total reward−(.0001×dist. moved)

An agent with perfect prediction capability (i.e. immediately
touching the stimulus that just appeared by already being in
its location) would therefore be able to reach a theoretical
maximum fitness score of 2525.

Network design
The virtual robot arm was controlled by a two-layer feedfor-
ward neural network with four sensory neurons, two predic-
tion neurons, eight internal (hidden) neurons, and two motor
neurons (see Figure 2). All sensory and prediction neurons
were normalized in the range [0.0,1.0], with Gaussian noise
sampled from N(0, .05) added to the input. The two motor
neurons were truncated to the range [−2.0,2.0], and allowed
for movement in the two-dimensional plane. For simplicity
we did not model the kinematics of an articulated effector.

The input to the two prediction neurons was constant
(i.e. also present during the ISI) and represented either (1)
the correct location of the next stimulus, (2) the location of
one of the four stimuli, randomly chosen, or (3) a constant
input of [0.0,0.0]. So although in the second condition the
prediction neurons were provided with the location of a stim-
ulus, this location was not informative of the actual location
of the next stimulus. These conditions will be referred to as

Figure 2: Two-layer feedforward network architecture used.
Six input units (two prediction units and four sensory units),
eight hidden units, and two output units controlled the virtual
robot arm.

accurate prediction, random prediction, and no prediction, re-
spectively.

The output O j of a hidden or motor neuron j was deter-
mined by the sigmoid activation function

O j =
1

1+ exp(−∑
N
i=1 wi jOi−bj)

(1)

in which N represents the number of input neurons i, Oi
their output, wi j the connection weight from i to j, and bj the
bias. Of the four sensory neurons, two were used for sensing
the target, and two for sensing the location of the agent.

Evolution of the network

Network weights were optimized using a neuroevolution al-
gorithm using a direct encoding scheme (i.e. there was a one-
to-one mapping of genotype to phenotype) similar to Nolfi,
Parisi, and Elman (1994). Although direct encoding schemes
have been criticized for being biologically implausible (Nolfi
& Parisi, 2002), and having difficulties with scalability2, di-
rect encoding provided a good trade-off between simplic-
ity and performance for the relatively simple networks used
in this study. The initial population consisted of 100 net-
works with weights uniformly random∈ [−2.0,2.0]. For each
subsequent generation, the twenty networks with the high-
est fitness value were allowed to reproduce by generating
four copies each, with Gaussian noise sampled from N(0, .3)
added to the network weights. In addition, each of the twenty
best networks was kept unmodified and added to the next
generation, keeping the population size a constant 100. All
simulations were run 30 times per condition, so a total of 90
simulations were run.

2The search space in direct encoding schemes increases expo-
nentially with network size.



Figure 3: Networks with accurate prediction attained higher
maximum fitness than networks with no prediction or random
prediction. These networks evolved to make efficient use of
the information from the prediction neurons. Displayed are
means over 30 simulations per condition.

Results
Maximum fitness of the networks differed between condi-
tions, F(2, 87) = 9.29, p < .001, η2

G = .176. Post-hoc pair-
wise t-tests showed that networks with accurate predictions
fed into the prediction neurons developed a higher maximum
fitness (M = 1868) than networks with no prediction (M =
1262), t(58) = 2.76, p = .008, d = .72, and than networks
with random prediction (M = 947), t(58) = 4.12, p < .001, d
= 1.08. These differences remained significant after Holm-
Bonferroni correction.

Figure 3 shows the evolution of fitness over time. Although
the networks with no prediction evolved somewhat faster than
networks with accurate prediction, maximum fitness leveled
off after ∼250 generations. For the networks with accurate
prediction the network weights evolved slower, but surpassed
the fitness of the non-predicting networks after 320 genera-
tions and continued to increase. Networks with random pre-
diction evolved slower overall, and attained lowest maximum
fitness.

Centering behavior differed between conditions, F(2, 86) =
8.09, p < .001, η2

G = .158. Post-hoc pairwise t-tests showed
that networks with accurate prediction spent a smaller propor-
tion of ITI time in the center 10 × 10 units (M = .195) than
both networks with no prediction (M = .415), t(57) = 4.64,
p < .001, d = 1.23, and networks with random prediction (M
= .340), t(58) = 2.96, p = .004, d = .778. These differences
remained significant after Holm-Bonferroni correction. The
networks with no prediction and random prediction did not
differ significantly, p = .277. Results are shown in Figure 4.

Movement across the environment is displayed in Figure 5.
The networks with random prediction (Figure 5b) learned that
the information provided was not informative, and reached
their maximum fitness by returning to the center of the envi-
ronment after touching each stimulus, whereas networks with
accurate prediction (Figure 5a) moved toward the next target,

Figure 4: The mean proportion of ITI time spent in the center
of the screen for all three conditions. Networks with accurate
prediction spent less time in the center. Error bars indicate
95% CI.

(a) In the condition with accu-
rate prediction, position density
is clustered around the stimuli,
indicating active movement to-
ward stimuli.

(b) With random prediction,
the networks evolve to produce
centering behavior. Most time
is spent in a position equidistant
to all targets.

Figure 5: Density heat map showing the relative amount of
time spent across locations in the accurate prediction and
random prediction conditions, ranging from blue (little time
spent) to red (most time spent).

waiting for it to appear.

Discussion
We investigated the behavior found in earlier work by Duran
and Dale (2009), Dale et al. (2012), and de Kleijn et al.
(in press). These studies describe a centering behavior in
which participants moved their mouse to the center of the
screen under some circumstances in sequential action learn-
ing tasks. Preliminary analysis of earlier collected data shows
that this behavior seems to be related to the quality of the ac-
tion plan, or the capability to predict the next stimulus. This
also makes sense on a theoretical level, as a central position
that is equidistant to all possible stimuli is optimal under max-
imum uncertainty.

In the current study we evolved artificial neural networks
that controlled a robotic arm, with a task analogous to the tra-
jectory serial response time task given to humans in de Kleijn
et al. (in press) and Kachergis et al. (2014). In one condi-
tion, an accurate prediction of the next stimulus was provided
to the network as part of the input. In the second condition,



the input given was randomly determined, and unrelated to
the next stimulus. In a third condition, input to the prediction
neurons was kept constant at zero. Under the last two con-
ditions, centering behavior developed, with the networks that
were provided random input and networks that were given no
input developing the same centering strategy as human par-
ticipants in de Kleijn et al. (in press) that had not developed
explicit sequence knowledge. In summary, we showed that
centering behavior evolved in a robotic arm controlled by an
artificial neural network in proportion to the unpredictability
of the next stimulus. This result mirrors the centering strat-
egy adopted by people under conditions of uncertainty, as de-
scribed in de Kleijn et al. (in press).

Future research could shed light on the differences between
the random prediction condition and the no prediction condi-
tion. From our results, it seems that performance was worse
under the random prediction condition (although not signifi-
cantly so), and developed more slowly. Apparently, the net-
works had trouble ignoring the dynamic, but uninformative
input. In comparative studies with human participants, it
would be interesting to distinguish between participants who
know that they are unaware of the sequence (no prediction),
and participants who are actively, but unsuccessfully, trying
to predict the sequence (random, or at least partly incorrect
prediction). We suggest that participants choose to deploy
strategies on the basis of their interpretation of the task: e.g.,
whether it is deterministic or probabilistic, and to what extent
they believe they are able to learn any regularities. It may be
fruitful in future studies of human sequential action learning
to inform the participants of the statistical nature of the se-
quences in order to discover how they choose strategies. Such
knowledge would inform the creation of human-like multi-
action planners, enabling our future robotic partners to inter-
act with us more predictably.
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André, J. B., & Nolfi, S. (2016). Evolutionary robotics sim-

ulations help explain why reciprocity is rare in nature. Sci-
entific Reports, 6:32785.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994).
An evolutionary algorithm that constructs recurrent neural
networks. IEEE Transactions on Neural Networks, 5, 54-
65.

Atkeson, C. G., Hale, J. G., Pollick, F., Riley, M., Kotosaka,
S., Schaul, S., . . . Kawato, M. (2000). Using humanoid
robots to study human behavior. IEEE Intelligent Systems
and their Applications, 15(4), 46-56.

Barry, J., Hsiao, K., Kaelbling, L. P., & Lozano-Pérez, T.
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