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Abstract 

Previous research has found that people can use word-object 
co-occurrences from ambiguous situations to learn word 
meanings (e.g., Yu & Smith, 2007). However, most studies of 
cross-situational learning present an equal number of words 
and objects, which may simplify the problem by, for example, 
encouraging learners to use assumptions such as each word 
going with one object. This paper presents several conditions 
in which the number of words and objects do not match: 
either additional objects appear at random, or objects appear 
sometimes without their intended words. These manipulations 
do generally hurt learning in comparison to balanced 
conditions, but people still learn a significant proportion of 
word-object pairings. The results are explored in terms of 
statistics of the training trials—including contextual diversity 
and context familiarity—and with the uncertainty- and 
familiarity-biased associative model. Parametric differences 
between conditions hint at hidden cognitive constructs. 

Keywords: statistical learning; cross-situational learning; 
language acquisition 

Introduction 
Human infants learn words quite quickly despite many 
challenges facing them, including uncertainty and ambiguity 
in the language environment. Recent research has studied 
how learners may acquire word meanings from regularities 
in the co-occurrence of words and referents (e.g., objects). 
Such cross-situational statistical word learning relies on two 
assumptions: 1) that spoken words are often relevant to the 
visible environment, and 2) that learners can to some extent 
remember the co-occurrence of multiple words and objects 
in a scene. Thus, as words and their intended referents are 
observed in different situations over time, learners can 
apprehend the correct word-object mappings. Relying only 
on the regularity of the linguistic environment and basic 
memory and attention processes, this may be an important 
method of learning nouns for infants, and even adult 
travelers in a foreign country. 

In adult cross-situational learning studies (e.g., Yu & 
Smith 2007), participants are asked to learn the meaning of 
alien words by watching a series of training trials. On each 
trial learners see an array of unfamiliar objects (e.g., four 
sculptures) and hear pseudowords (e.g., stigson, bosa). The 
meaning of each pseudoword is ambiguous on a given trial, 
because although each word refers to a single onscreen 
object, the intended referent is not indicated. In a typical 
learning scenario, participants attempt to learn 18 word-
object pairings from 27 trials, with four words and four 
objects given per trial. In this design, each word-referent 
pair is presented six times over the five-minute training 
period. Learning a correct word-object pairing requires 

some form of accumulation of word-object co-occurrences. 
When tested on each word and given four trained objects to 
choose from, participants chose the correct object for half of 
the 18 words, on average (Yu & Smith, 2007).  

However, learning environments in the real world are 
likely not as simple: there may be objects present that go 
unnamed, some spoken words (e.g. articles) do not refer to 
particular objects, and object names may be spoken when 
the intended object is not visible. These forms of noise 
likely interfere with learning to some extent. When a word 
is heard without the object it previously co-occurred with 
several times, is a learner to map it to a new object? What if 
that object already has a name? Conversely, when an object 
is seen, but the word it previously occurred with is not 
heard, will learners lose certainty about the old mapping, 
and even associate a new word with it? 

In this study, we take baseline conditions from Yu & 
Smith (2007) that present an equal number of words and 
objects on each trial and either add or remove words or 
objects in a systematical way in order to change various co-
occurring statistics that learning may rely on. We investigate 
several critical factors that matter to learning, such as 
conditional probability of words given objects during 
learning, final test probability, and contextual diversity—the 
number of other pairs each pair appears with (Kachergis, 
Yu, & Shiffrin, 2009b). Following Fazly, Alishahi, and 
Stevenson (2010), we also investigate additional two factors 
– age of exposure (i.e., when a pair first appears) and 
context familiarity (the mean frequency of the objects a 
given pair appears with). Not only are these factors likely to 
influence how well people learn, but likely so will the fact 
that the trials contain an unequal number of words and 
objects. Previous studies have also typically presented an 
equal number of words and objects on each trial, which may 
induce participants to only consider 1-to-1 mappings 
(although see Vouloumanos, 2008 as well as mutual 
exclusivity investigations: Kachergis, 2012; Ichinco, Frank, 
& Saxe, 2009; Yurovsky & Yu, 2008). 

Finally, we use a recent associative model of cross-
situational learning (Kachergis, Yu, & Shiffrin, 2012) to 
shed light on differences between the conditions. The model 
assumes that learners have access to both their familiarity 
and their uncertainty about the word-object pairings present 
on a given trial, and that attention competes for uncertain 
stimuli and for already-strong pairings. This model matches 
adult behavior in a number of previous cross-situational 
experiments (Kachergis, 2012; Kachergis, Yu, & Shiffrin, 
2013).  



Experiment 
Participants were asked to learn 18 word-referent pairs 

from a series of individually ambiguous training trials using 
the cross-situational word learning paradigm (Yu & Smith, 
2007). Each training trial was comprised of a display of two 
or more novel objects and two or more spoken 
pseudowords, depending on condition. With no indication 
of which word refers to which object, on a single trial, 
learners can only guess at the correct word-referent 
mappings. However, since words always appear on trials 
with their intended referents, the correct pairings may be 
learned over the series of trials.  

In this study, many conditions were created by 
manipulating training conditions from Yu and Smith 
(2007)—the 2x2 (i.e., 2 word-object pairs per trial), 3x3, 
and 4x4 conditions— to introduce different types of noise 
which is arguably more in line with real-world learning, 
such as a non-referential word, an unnamed object, or both. 
In every condition, participants experienced a series of 
training trials with a total of 18 intended word-object pairs. 
The same pair was never allowed to appear in neighboring 
trials in conditions, as previous studies have shown such 
temporal contiguity improves learning (Kachergis, Yu, & 
Shiffrin, 2009a; Kachergis, Yu, & Shiffrin, 2013). In the 
baseline 2x2 (54 trials), 3x3 (36 trials), and 4x4 (27 trials) 
conditions, each word and object appear 6 times. Every time 
a given object is present, the intended word is presented 
(p(w|o)=1), and every time a given word is presented, the 
intended object is present (p(o|w)=1). Most conditions in 
Table 1 were built from these three baseline conditions. We 
manipulate the number of words and objects per trial, thus 
changing their frequency. This also changes the probability 
of hearing the word for a given object on a trial (in Table 1, 

Trial p(w|o)). The probability of seeing an object given that 
its label was heard was always 1 (Trial p(o|w)). Test p(o|w) 
in Table 1 shows the probability of guessing the intended 
object for a given word after experiencing all of the training. 

In the 2x4 condition, words appeared 6 times and objects 
12 times, so on each trial the probability of hearing the 
intended word for a given object is p(w|o)=.5. In the 2x3 
condition, objects appear 9 times, making p(w|o)=.67. In the 
2x4 condition, each word appears 6 times and each object 
appears 12 times. In the 3x3 +1w/o condition, an additional 
random word and object were shown on each trial. In the 
4x4 +2w/o condition, two additional random words and 
objects were shown per trial. In the 3x4 condition, each 
word appears 6 times, each object 8 times (p(w|o)=.75). In 
the 3x4 1/.5 condition, words appear 6 times, and 12 objects 
appear only with their words (p(o,w)=1), while 6 objects 
appear 12 times (p(w|o)=.5).  In the 3x4 1/.66 condition, 
words appear with their objects 6 times (p(w|o)=1), but 12 
objects appear 3 additional times (p(w|o)=.66) without their 
words. In the 3x4 +6o condition, 18 word-object pairs co-
occur 6 times, and 6 additional objects occur as noise.  

The 1x3 condition divided each trial of the 3x3 condition 
into 3 trials with one word and 3 objects, and shuffled the 
trials so no objects (or words) repeated trial-to-trial. Thus, 
words appeared 6 times, and objects 24 times (p(w|o) = .33). 
The 1x4 condition divided the 4x4 trials as 1x3 did for 3x3, 
meaning that objects appeared 24 times (p(w|o) = .25).  

Calculated for each item per condition, Table 1 also 
shows the average “Age” of Exposure (trial the pair first 
appears), Context Familiarity (defined by Fazly, Alishahi, 
and Stevenson (2010) as the mean co-occurrence with all 
other pairs across exposures), and Context Diversity (the 
number of unique pairs a pair co-occurs with over training). 

 

Condition Word 
Freq. 

Object 
Freq. 

Trial 
p(w|o) 

Test 
p(o|w) 

Context 
Familiarity 

“Age” of 
Exposure  

Context 
Diversity 

Num. 
Subjs. Correct 

2x2 6 6 1 0.5 3.5 5.6 5.1 19 0.79 

2x3 6 9 0.67 0.33 3.3 6.0 9.1 55 0.56 

2x4 6 12 0.5 0.25 3.3 5.6 11.8 33 0.30 
3x3 +1w/o 9 9 1 0.22 5.1 4.3 12.9 39 0.17 
4x4 +2w/o 12 12 1 0.12 6.6 3.8 16.2 39 0.10 

3x3 6 6 1 0.33 3.5 3.7 8.8 36 0.43 
1x3 6 18 0.33 0.33 3.2 17.5 8.7 63 0.52 
3x4 6 8 0.75 0.25 3.4 3.7 12.3 25 0.19 
3x4 +6o 6 6 1 0.25 3.5 3.7 13.6 20 0.27 
3x4 1/.5 6 8 1 / .5 0.25 4.3 3.7 11.3 25 0.22 
3x4 1/.66 6 8 1 / .66 0.25 3.6 3.7 12.1 25 0.21 

4x4 6 6 1 0.25 3.5 2.8 12.2 77 0.31 
1x4 6 24 0.25 0.25 3.1 19.9 12.0 40 0.19 

Table 1. Summary of conditions in the Experiment. 



Subjects 
Participants were undergraduates at Indiana University who 
received course credit for participating. The number of 
participants in each condition are shown in Table 1 (Num. 
Subjs. column). None had participated in previous cross-
situational experiments.  
Stimuli 
Each training trial consisted of an array of 2-4 uncommon 
objects (e.g., sculptures) and 2-4 spoken pseudowords, 
depending on condition (see Table 1). The computer-
generated pseudowords are phonotactically-probable in 
English (e.g., “bosa”), and were spoken by a monotone, 
synthetic female voice. The words and objects used for each 
condition were drawn from a set of 72 words and 72 objects. 

Training for each condition consisted of between 27 and 
108 trials. Each training trial began with the appearance of 
two to four objects (differing by condition) which remained 
visible for the entire trial. After 2s of initial silence, each 
word was heard (1s per word, with 2s of silence after each).  
Procedure 
Participants were told they would see a series of trials with 
some objects and alien words, but that the words would be 
presented in random order. They were also told that their 
knowledge of which words belong with which objects 
would be tested at the end.  

After each training block, participants’ knowledge of 
word-object mappings was assessed using 18-alternative 
forced choice (18AFC) testing: on each test trial a single 
word was played, and the participant was instructed to 
choose the appropriate object from a display of all 18 
trained objects. Each of the 18 words was tested once in a 
random order.  

Results & Discussion 
As shown in Fig. 1, all of the conditions had mean 
performance significantly above chance (18AFC chance = 
.056). The 2x2 baseline condition had by far the highest 
performance (M=.79). Adding another object to each trial—
without it’s intended word—harmed learning (2x3: M=.56). 
2x4 adds yet another object, further decreasing both Trial 
p(w|o) and Test p(o|w), resulting in even lower performance 
(M=.30). Adding an extra pair (3x3 +1w/o) or two (3x3 
+2w/o) is even more harmful (M=.17, M=.10, resp.); it both 
lowers Test p(o|w) and creates more possible pairings to 
consider on each trial. For another example, the 1x3 and 1x4 
conditions are identical in all of the other factors except that 
there were 1 word and 3 objects in the 1x3 condition (0.33) 
but 1 word and 4 objects in the 1x4 condition (0.25). This 
one change caused a dramatic performance difference from 
M=.53 to M=.19. Meanwhile, it may not seem like there is a 
dramatic difference between the 1x3 and 2x3 conditions. All 
this suggest that given multiple factors that can be used to 
characterize statistical information in training data, and the 
flexibly of human statistical learning systems, it is difficult 
to pull apart all of the effects in terms of conditions—
especially in the 3-word and 4-word conditions—as a 

change in one factor is often correlated with changes in 
several other factors (e.g., contextual diversity and context 
familiarity). 
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Figure 1: Mean accuracy by training condition. Performance 
was variable, but all conditions were above chance 
(18AFC=.056). Error bars show +/-SE. 

 
To better understand the effects of the various factors, we 

fit a logistic mixed-effects regression model to the trial-level 
accuracy data using the lme4 package in R (Bates and 
Maechler, 2010; R Development Core Team, 2010). Mixed 
logit models are more appropriate for forced-choice data 
than ANOVAs, especially when different conditions yield 
different amounts of data, as in the present experiment 
(Jaeger, 2008). The model included subject as a random 
factor, and Trials/Condition, Word Frequency, Object 
Frequency, Trial p(w|o), Test p(o|w), Contextual Diversity, 
Age of Exposure, and Context Familiarity as fixed factors. 
All of these factors were scaled to remove collinearity. 
Shown in Table 2, there was a significant negative intercept, 
showing that participants were less likely to choose the 
correct answer than the incorrect answer. Trials/Condition 
and Test p(o|w) both had significant, large positive 
coefficients (.75 and .78), showing that longer training 
periods were better, as well as stronger correct 
associations—both of which occur more in the conditions 
with fewer pairs per trial (i.e., 2x2 rather than 4x4).  

 
Factor Coefficient Z p-value 

(Intercept) -0.75 -9.20 <.001 

Trials/Cond 0.75 4.57 <.001 

Word Freq -0.10 -0.92 =.36 

Obj Freq -0.58 -2.75 <.01 

Trial p(w|o) -0.14 -0.88 =.38 

Test p(o|w) 0.78 5.67 <.001 

Cont. Fam. 0.20 2.82 <.01 

Age of Exp -0.08 -1.93 =.05 

Cont. Div. 0.17 2.24 <.05 
Table 2. Summary of logistic regression results. 

 



Word frequency did not contribute significantly to 
correctness, but object frequency had a negative coefficient, 
showing that additional repetitions of an object on trials 
without the intended word indeed inhibited learning of that 
object. Trial p(w|o) was not a significant predictor of 
accuracy; it seems the other (partially-correlated) factors 
better capture the variance. Context Familiarity and 
Contextual Diversity both have significant positive 
coefficients (.20 and .17). Though they are correlated 
(r=.56), these two factors both help people learn words. Age 
of Exposure had a marginally significant negative 
coefficient (-.08), showing that earlier-appearing pairs are 
indeed a bit more likely to be learned.  

In total, these results offer a look at the factors that 
influence cross-situational word learning, and an estimate of 
their relative magnitudes. We now apply a recent associative 
model of cross-situational word learning to see whether it 
can account for word-learning in these noisy environments, 
and to see whether the recovered parameters yield any 
additional insight. 

Model 
To better understand how the condition demands differ, we 
introduce an associative model of cross-situational word 
learning proposed by Kachergis, Yu, and Shiffrin (2012a). 

The model assumes that learners do not equally attend to 
all word-object pairings on a trial (i.e., store all co-
occurrences). Rather, selective attention on a trial is drawn 
to strengthen associations between words and objects that 
have co-occurred previously. This bias for familiar pairings 
competes with a bias to attend to stimuli that have no strong 
associates (e.g., as a novel stimulus). The competing 
familiarity and uncertainty biases allow the model to exhibit 
fast mapping, since a novel word-novel object combination 
will demand more attention, and mutual exclusivity: a novel 
word will only become weakly associated with an already-
known referent (Kachergis, Yu, & Shiffrin, 2012). For 
example, suppose word w1 and object o1 have appeared 
together and are thus somewhat associated, while w7 and o7 
are novel. Given a trial with both pairs: {w1,o1,w7,o7}, w1-o1 
demands more attention than w7-o1, w1-o7, or w7-o7, since 
w1-o1 is stronger than baseline. However, attention is also 
pulled individually to w7 and to o7, since both of these novel 
stimuli have no strong associates. Uncertainty is measured 
by the entropy of each stimulus’ association strengths. 
Because of the high joint uncertainty of w7 and o7, more 
attention is given to the association w7-o7. Thus, attention is 
mostly divided between w1-o1 and w7-o7, although the other 
pairings will be strengthened a bit. 

Formally, let M be an n word × n object association 
matrix that is incrementally built during training. Cell Mw,o 
will be the strength of association between word w and 
object o. Strengths are subject to forgetting (i.e., general 
decay) but are augmented by viewing the particular stimuli.  
Before the first trial, M is empty. On each training trial t, a 
subset S of m word-object pairings appears. If new words 
and objects are seen, new rows and columns are first added. 

The initial values for these new rows and columns are k, a 
small constant (here, 0.01).  

Trial-to-trial, association strengths decay and then a fixed 
amount of associative weight, χ, is distributed among the 
presented word-object associations and added to the 
strengths. The rule used to distribute χ (i.e., attention) 
balances a bias for attending to unknown stimuli with a bias 
for strengthening already-strong associations. When a word 
and referent are repeated, extra attention (i.e., χ) is given to 
this pair: a prior knowledge bias. Stimuli with no strong 
associates also attract attention, whereas pairings between 
uncertain objects and known words, or vice-versa, draw 
little attention. Stimulus uncertainty is measured by entropy 
(H), which is 0 when the outcome of a variable is certain 
(e.g., a word appears with one object, and has never 
appeared with any other object), and maximal (log2n) when 
all of the n possible object (or word) associations are 
equally likely (e.g., when a stimulus has not been observed 
before, or if a stimulus were to appear with every other 
stimulus equally). In the model, on each trial the entropy of 
each word (and object) is calculated from the normalized 
row (column) vector of associations for that word (object), 
p(Mw,·), like so: 

 
The update rule for allocating attention and adjusting 

strengths for the stimuli presented on a trial is: 

Entropy Bias:

Mw,o =
H(w) · H(o) · ⇥P

w�S

P
o�S H(w) · H(o)

Strength & Entropy Bias:

Mw,o =
H(w) · H(o) · Mw,o · ⇥P

w�S

P
o�S H(w) · H(o) · Mw,o

2 Additive Models (not as good)

Unbiased:
Mw,o = Mw,o +

⇥

|S|2

Biased:
Mw,o = Mw,o +

Mw,o · ⇥P
w�S

P
o�S Mw,o

Fixed capacity:

Mw,o = Mw,o +
H(w) · H(o) · Mw,o · ⇥P

w�S

P
o�S H(w) · H(o) · Mw,o

Supercapacity:

Mw,o = Mw,o +
H(w) · H(o) · Mw,o · ⇥P
w�S

P
o�S H(w) · H(o)

Best model (scaled entropy):

Mw,o = Mw,o +
e�·(H(w)+H(o)) · Mw,o · ⇥P

w�S

P
o�S e�·(H(w)+H(o)) · Mw,o

Best model (scaled entropy with decay):

Mw,o = �Mw,o +
⇥ · e�·(H(w)+H(o)) · Mw,oP

w�S

P
o�S e�·(H(w)+H(o)) · Mw,o

Entropy:

H(Mw,·) = �
nX

i=1

p(Mw,i) · log(p(Mw,i))

2

 
In this equation, α is a parameter governing forgetting, χ 

is the weight being distributed, and λ is a scaling parameter 
governing differential weighting of uncertainty and prior 
knowledge (familiarity). As λ increases, the weight of 
uncertainty (i.e., the exponentiated entropy term, which 
includes both the word’s and object’s association entropies) 
increases relative to familiarity. The denominator 
normalizes the numerator so that exactly χ associative 
weight is distributed among the potential associations on the 
trial. Only decay operates for stimuli not on the current trial. 
After training, a learner is tested with each word and 
chooses an object from n alternatives in proportion to the 
association strengths of each alternative to that word.  

In sum, this associative model learns trial-by-trial by 
distributing attention in a way that corresponds with both 
our intuitions about word-learning—using competing biases 
for familiar pairings and uncertain stimuli—and a number of 
empirical findings. Three parameters (χ, α, and λ) were fit 
using log likelihood to each individual’s choices in each 
training condition. The model achieved quite a good fit to 
the data, with R2=.98. Figure 2 shows mean model 
performance for individuals’ model fits by condition. Figure 
3 shows individuals’ mean performance in each condition 
versus the model’s performance. Next, we investigate the 



parameter values for each condition to see what they tell us 
about the cognitive effects of different types of noise. 
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Figure 2. Model performance closely matches human 
performance (Fig. 1) and variability in the Experiment.  
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Figure 3. Individual performance versus model fit: the 
model was capable of closely matching the behavior of most 
participants.  

 
We first looked at correlations between each parameter 

and performance. χ was positively correlated with learning 
(Pearson’s r=.72, t(494)=22.74, p<.001), which is consistent 
with our interpretation of χ as a learning rate; how much 
associative weight can be distributed per trial. λ was 
negatively correlated with performance (r = -.22, t(494)=-
5.04, p<.001): greater focus on uncertain stimuli seems to 
harm learning, at least in the conditions of this Experiment. 
λ and χ were also negatively correlated (r = -.20, t(294)=-
4.64, p<.001), meaning that uncertainty-focused learners 
tended to have slower learning rates. All other correlations 
were <|.03|, and not significant.  

We also investigated whether there were differences in 
parameters by condition. Ideally, the parameters of a 
cognitive model should be cognitively interpretable. For 

example, in our model, χ is for now a learning rate per trial, 
but should likely depend on how many possible associations 
there are on a trial and how much time there is to consider 
them. If systematic differences in particular parameters were 
required to fit performance in some of the conditions, then 
we may be able to pinpoint which factors learning rate and 
memory decay depend on, and redefine them in more 
meaningful units. An ANOVA by condition for each 
parameter showed significant differences for all three 
parameters (χ: F(12,482)=11.63, p<.001; λ: F(12,482)=2.13, 
p=.01; α: F(12,482)=2.70, p<.01). Table 3 shows the mean 
parameters found for each condition. We emboldened the 
highest mean values for each parameter and italicized the 
lowest in order to highlight the conditions with unusual 
mean parameter values. 

For χ, the 2x2 condition has the highest value (19.47), 
and this condition also yields the highest performance in 
humans. 2x2 also has the lowest λ (i.e., more focus on 
familiarity) and α (i.e., faster decay), the latter of which 
may mitigate the high learning rate a bit. Conditions with 
the next-highest learning rates—2x3 (9.87) and 1x3 
(10.32)—had the next-highest performance (.56 and .52). 
1x3, along with 1x4 also had the highest mean α = .94 
(memory fidelity). These two conditions have the shortest 
trials (5s), along with the fewest possible associations: only 
one word and three or four objects. The conditions with the 
lowest learning rates, 3x4 (χ=.35) and 1x4 (χ=.47), have 
fairly low performance (.19 and .19). The short trial time for 
the 1x4 condition may not give subjects enough time to pick 
out the single correct pairing.  

Condition Correct χ λ α 

2x2 0.79 19.47 5.0 0.85 

2x3 0.56 9.87 6.9 0.92 

2x4 0.30 1.73 9.3 0.88 

3x3 +1w/o 0.17 0.91 8.6 0.89 
4x4 +2w/o 0.10 3.01 8.7 0.87 

3x3 0.43 6.30 6.1 0.90 

1x3 0.52 10.32 7.3 0.94 

3x4 0.19 0.35 7.5 0.89 

3x4 +6o 0.27 5.07 9.2 0.89 

3x4 1/.5 0.22 0.99 8.0 0.92 

3x4 1/.66 0.21 1.58 9.1 0.88 

4x4 0.31 2.80 7.9 0.87 

1x4 0.19 0.47 9.1 0.94 
Table 3. Mean of best-fitting parameters for each condition. 
The largest and smallest mean values of each parameter are 
emboldened and italicized, respectively. 
In the 3x4 condition, there are again more objects than 
words, and many possible associations. The other 3x4 
conditions also had low performance and low learning rates, 



except for 3x4 +6o, in which participants may have had 
little difficulty ignoring the extraneous objects (which are 
less confusing since they are occur infrequently, and never 
with a consistent name). It is hard to see a pattern in λ, the 
relative focus on uncertainty vs. familiar pairings (roughly, 
explore vs. exploit). We do not yet have any reason to 
believe λ should remain fixed; learners may well change 
it—implicitly or strategically—depending on task demands. 
Moreover, previous investigations found that λ has little 
effect on the shape of learning curves (Kachergis, Yu, & 
Shiffrin, 2012b).  

Discussion 
In the language environment, many objects in a scene 

may go unlabeled, whether they are novel or familiar. For 
the sake of simplicity, previous studies of cross-situational 
learning presented an equal number of words and objects on 
each trial, and a word’s intended referent was always 
present (and vice-versa; e.g. Yu & Smith, 2007; Kachergis, 
Yu, & Shiffrin, 2009a, 2009b). In this study, we presented 
learners with a variety of conditions with different kinds and 
degrees of statistical noise (e.g., extra objects, mismatched 
words and objects). Although performance varied widely in 
different conditions, learners performed significantly above 
chance in all conditions.  

To better understand what factors influence learning, we 
measured various statistics about items in each condition, 
and tried to predict learning from these statistics. Greater 
contextual diversity—how many pairs a pair appears with 
during training, context familiarity—the average frequency 
of pairs a pair appears with, trials per condition, and overall 
strength of the correct pairing all significantly improved the 
odds of learning a pair. Being exposed to a pair earlier in 
training improved learning of that pair, but being exposed to 
an object more often inhibited learning, because in this 
study extra occurrences of an object were likely to be noise 
(e.g., appearing on a trial where it goes unnamed). These 
conditions and measures provide important constraints for 
word-learning models, as well as demonstrating that cross-
situational learning is robust under a variety of types of 
noise. 

We applied a recent associative word-learning model to 
these data, and found that it could account for individuals’ 
behavior in each of the conditions. We investigated the 
average parameter values for individuals in each condition, 
and found that they differed. The learning rate parameter 
was strongly linked to overall performance, and was high 
when there were few pairings to consider on each trial (e.g., 
2x2, 1x3)—unless most of them were noise, and presented 
quickly (e.g., 1x4). There less memory decay in conditions 
with very one word per trial, and thus few associations (1x3, 
1x4), although the most decay occurred in the 2x2 
condition, but that was balanced by the fast learning rate. 
Overall, we have a somewhat clearer idea of what the 
model’s parameters do under different noise conditions, but 
we do not yet have a wholly satisfactory psychological 
interpretation of them. 

 

In summary, cross-situational learning is robust under a 
many noise conditions that more closely resemble situations 
learners may encounter in the real world than in previous 
studies. Moreover, we have presented a large dataset that we 
hope will inspire new experiments to test the limits of cross-
situational learning, and will constrain and inform modeling 
efforts.  
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