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Abstract—The serial reaction time (SRT) task measures learn-
ing of a repeating stimulus sequence as speed up in keypresses,
and is used to study implicit and motor learning research
which aim to explain complex skill acquisition (e.g., learning
to type). However, complex skills involve continuous, temporally-
extended movements that are not fully measured in the discrete
button presses of the SRT task. Using a movement adaptation
of the SRT task in which spatial locations are both stimuli
and response options, participants were trained to move the
cursor to a continuous sequence of stimuli. Elsewhere we repli-
cated Nissen and Bullemer (1987) [1] with the trajectory SRT
paradigm [2]. The current study extends it to the problem of
learning complex actions, composed of recurring short sequences
of movements that may be rearranged like words. Reaction
time and trajectory deflection analyses show that subjects show
within-word improvements relative to unpredictable between-
word transitions, suggesting that participants learn to segment
the sequence according to the statistics of the input.

I. INTRODUCTION

Most daily activities people perform can be described as
sequential actions, from cleaning and cooking to sports and
even language. Since none of these activities are completely
innate, it is critical that humans are able to learn such se-
quences by observing or engaging in them. Being as important
as it is, sequence learning has been studied extensively, both
in implicit sequence learning paradigms [1], [3]–[5] as well
as in language acquisition studies (e.g., [6]). More recently,
sequential action research has also been of interest to the field
of robotics, where many tasks require multiple steps. While
human research on motor control has typically focused on
single-step actions in response to various stimuli, everyday
life seems to have little to do with single-step action. In order
to perform relevant action, we need to perform (and thus learn)
sequences [7].

One of the most important paradigms used to study human
sequence learning is the serial reaction time (SRT) task. In this
task, subjects are asked to press 4 buttons in a series, prompted
by corresponding lights that repeat in a long sequence. Sub-
jects are unaware of the fact that the same sequence repeats
every 10 button presses [1]. Subjects trained on this repeating
sequence show faster reaction times over training than subjects
presented with random sequences, while in large part reporting
that they were unaware of any fixed sequence. Awareness can

be improved by increasing motivation with reward, as was
shown by Fu et al. [8], which argued that this increases the
amount of attention paid to the stimuli, thereby increasing
awareness.

While implicit sequence learning research has shed light on
the acquisition of action sequences, real-life action sequences
tend to be less clearly structured than their experimental
counterparts. After all, human activity is a continuous flow of
behavior. While it may seem easy for most adults to determine
where ‘opening the cupboard’ ends and ‘reach for the coffee
mug’ starts, as a naı̈ve observer it can sometimes be difficult to
distinguish where one sequence element ends and the next one
starts. Indeed, a human (or robot) may ideally blend actions
when possible: e.g., pulling the door open with their right hand
(if hinged on the right) in order to begin reaching in with
the left even as the door opens. A striking example occurs
during language acquisition, where at first a foreign language
sounds like one big blurt of noise while you get better at
recognizing discrete words over time. So how do we deal with
this problem?

One theory is that we use statistical structure to learn
sequences. Saffran et al. [6] trained subjects on a continuous
sequence of spoken 3-syllable words. These were constructed
so that the within-word transitional probabilities of syllables
was higher than those between words. This is generally
true in human language: word-internal syllable pairs tend to
be more frequent than word-external pairs (consider bay.bi
and bay#too). The difference in transitional probabilities was
sufficient for subjects to learn to differentiate between words
occurring in the language and non-word foils. Saffran et al.
[6] concluded that word segmentation relies on the statistical
structure present in language, which we find corresponds to the
effect of statistical structure on sequence learning, in general.

Another kind of information we can use to learn sequences,
at least in language, is prosodic cueing. Child-directed speech
uses pitch raise to highlight topical words, making segmenting
easier for young infants. However, regular speech also shows
the use of these cues. English, for example, contains word-
initial strong syllables. The role of these cues was investigated
in [6]. In this study, three cueing conditions were used: (1)
initial vowel lengthening, (2) final vowel lengthening, and



(3) no lengthening. When subjects were trained on a set of
six 3-syllabic words, subjects in the final vowel lengthen-
ing condition performed better than subjects in the initial
and no lengthening conditions, while subjects in the initial
lengthening condition performed as well as subjects in the
no lengthening condition. In all three conditions subjects
performed better than chance. This demonstrates that prosodic
cues are helpful but not necessary for segmenting speech.

To further investigate the role of cues in learning transitional
probabilities, we used a modified version of the SRT paradigm.
The SRT paradigm has been used earlier by Cleeremans and
McClelland [3] to train subjects on a grammar-like structure,
and the presence of such structure was shown to improve
sequence learning. Our adaptation of the SRT task uses
mouse movements instead of button presses, and on-screen
squares instead of lights. This allowed us to record trajectory
information, especially relevant in language-related studies as
it allows the examination of context effects such as predictive
movements towards the next target location. Moreover, the
current paradigm allows us to record information that was
previously unavailable, such as movements between words,
which may reflect the uncertainty at those times. Using reward
as a cue, subjects were trained on six 4-position (i.e., 3-
movement) ‘action words’, and were either rewarded after
completing a word, just after beginning a word, or at every
sequence element but the first. We show that subjects are able
to use statistical structure to segment sequences, replicating
[6] in an action learning domain. Intriguingly, we find little
effect of reward on the speed or structure of learning.

II. EXPERIMENT

Nissen and Bullemer [1] originally found participants show-
ing improved performance within the first block of training.
The study also found that performance varied as a function
of serial position in a pattern suggesting that learners were
chunking the sequence into two pieces. In total, the study’s
results suggest that attention to the sequence is crucial for
both implicit and explicit sequence learning, but that improved
performance is not critically dependent on awareness of the
sequence. For the purpose of this study only the initial
experiment was replicated. We expect to replicate the basic
improvement of performance, as well as the chunking pattern
that was observed.

This experiment extends the trajectory SRT paradigm, in-
troduced in Kachergis et al. [2] to replicate Nissen and
Bullemer [1], to a statistical learning experiment studying
the effects of different reward schemes on sequential action
learning. The experiment’s design is inspired by Saffran et
al.’s statistical word segmentation study [6], with variations
of reward schemes that may help (or hinder) learning. Saffran
et al. constructed an artificial language, stringing together
syllables to create “words” with greater within-word transi-
tional probabilities than the possible between-word transitional
probabilities. Participants trained on this language were later
able to differentiate between words from the language and
non-word foils. Syllable length was manipulated in a second

experiment investigating prosodic cueing, which found that
lengthening the final syllable of each word facilitates seg-
mentation, whereas lengthening the first syllable does not.
This effect was interpreted as modulating the main effect
of transitional probability, where a cue signals and draws
attention towards a transition. For the complete transition to
be encoded, the cue needs to precede rather than follow it.

We attempted to translate the artificial language used by
Saffran et al. [6] into analogous action “words” fit for the
trajectory SRT paradigm. The words used by Saffran et al.
consisted of 12 unique syllables (combining 4 vowels and
7 consonants). These syllables were used to construct 6
trisyllabic words (e.g., babupu, bupada), which were then
concatenated into a sequence. Directly translating the syllables
(or letters) into quaternary codes based on location results
in a minimum syllable length of 4, which would generate
very long words (12 locations). Thus, we decided instead
to generate novel combinations of four stimulus positions
instead. Designating the stimulus positions as numbers, left-
to-right and top-to-bottom, as shown in Figure 1, the words
were: 2-3-1-2, 3-1-2-1, 4-2-1-2, 1-2-1-4, 1-4-2-3 and 4-2-
3-1. The criteria set by Saffran et al. consisted of within-
word transitional probabilities ranging from 0.3 to 1.0 and
between-word transitional probabilities ranging from 0.1 to
0.2. Probability ranges for the sequence we used were 0.25 to
0.75 for within-word transitions and 0.04 to 0.22 for between-
word transitions.

2-3-1-2!

1-2-1-4!

1! 2!

3! 4!

1-4-2-3! 4-2-3-1!

4-2-1-2!3-1-2-1!

B!

E!

C!A!

D! F!

Fig. 1: The six action “word” subsequences participants were
trained on in the experiment. No position may be immediately
repeated (e.g., 1-1). Words B, C, and D contain returns (e.g.,
1-2-1). Words E and F contain all four locations.

In another experiment, Saffran et al. investigated the effects
prosodic cueing by lengthening the vowel of either the first
or third (final) syllable in the word, finding that lengthening
the final syllable improved performance beyond baseline or
lengthening the first. Motivated by these results and the
question of how reward affects learning multi-step actions, we



implemented cueing in the form of different reward schemes.
The rewards were aligned to the first or last action in an
action sequence, analogous to the prosodic cue conditions in
the Saffran et al. study. A reward after completing a movement
should emphasize the stimulus in a similar way the lengthening
of a syllable does.

A. Methods

1) Participants: 45 Leiden University students participated
in exchange for 3.5 euros or one course credit. Participants
were told they would receive an additional euro if they
performed well (all participants were given this supplement).

2) Procedure: Participants were told to move the cursor as
fast and accurately as possible to any target that changed to
green, and that good performance could earn them a bonus
euro. The stimulus display consisted of four red squares
(location 1 = upper left, 2 = upper right, 3 = lower left, 4 =
lower right), displayed continuously. Monitors were 17”, set
to 1024 resolution, and each stimulus was 80 pixels on each
side, separated by 440 pixels of white space. After arriving at
the highlighted green stimulus (the other three stimuli were
red), another stimulus was highlighted after a 500 ms ISI.
Participants completed 4 blocks of 20 training trials, each of
which contained a series of 12 locations (i.e., 3 ‘words’).
There was a short rest break after every block. In each
block, each of the 6 action ‘word’ subsequences appeared 10
times1, randomly distributed. Word transition frequency was
not uniformly random, as no word or stimulus repetitions were
allowed. Points were allocated periodically during training
trials, indicated in green numbers above the arrived-at target
stimulus. After training, participants were given a generating
task in which they were asked to generate any action sequences
they recalled from training. In the generation task, correct
predictions were rewarded (5 points per stimulus), mistakes
were penalized (-20 points). After either correctly forming all
words or by making 24 attempts (i.e., 72 movements) in total,
participants completed the experiment.

3) Design: Participants were all trained on the same se-
quence, but were given point rewards according to one of
three different schedules, shown in Figure 2: the Aligned
Cue condition awarded 15 points upon arrival at every fourth
stimulus (i.e., the end of a word), the Misaligned Cue condition
awarded 15 points after the first stimulus in a word, and the
No Cue condition gave 5 points on arrival at every stimulus
in a word but the first (n.b.: the omitted points may serve as
a cue). Fifteen participants were randomly assigned to each
condition.

B. Results

Median movement time in the training phase was 1,056
ms (sd: 1,652). Of 43,155 target arrivals, 190 were removed
for being slower than 2,708 ms (median+sd). We analyzed
subjects’ block-by-block median movement RTs by condition
and by position within the word, expecting in general that

1Note that 40 repetitions per word is far fewer than the 300 repetitions used
in Saffran et al.

1! 2!

3! 4!

No Cue!

1! 2!

3! 4!

Aligned Cue!

1! 2!

3! 4!

Misaligned Cue!
+5!

+5!

+5! +15!

+15!

Fig. 2: Example of the reward schedules during one word (4-
2-3-1) in the three between-subjects conditions. Points were
given immediately after arrival at the stimulus.

moving to the first stimulus in the next word (position 1) would
be slower than within-word movements (positions 2, 3, and
4), which have higher transitional probabilities. Moreover, the
different reward conditions may influence RTs at particular
positions (e.g., just after the reward). A condition by position
by block (3×4×4) ANCOVA showed significant main effects
of block (F (1,42) = 29.20, p < .001), condition (F (2,42) =
5.00, p < .001), and position (F (1,42) = 16.33, p < .001).
RT for each successive block decreased: 1127 ms, 1064 ms,
1043 ms, and 1029 ms, for blocks 1 to 4, respectively. The
misaligned cue condition had the fastest overall RT (1053 ms),
followed by the no cue condition (1067 ms), and the aligned
condition (1077 ms)–contrary to our expectations, although
further analyses will investigate within-participant speed-ups,
rather than overall between condition effects. Figure 3 shows
the mean of subjects’ median RT by block for each condition,
with movements between ‘words’ (i.e., starting a new word)
split out. Participants in all three conditions got faster over the
course of the experiment, but no reward condition seemed to
improve faster.

The mean RT at within-word positions decreased until
from positions 1 (i.e., the between-word movement) to 3
(1112 ms, 1074 ms, and 1026 ms, respectively), and increase
again slightly at position 4 (1052 ms). This generally shows
that between-word movements (moving to location 1 of a
new word) are slower than within-word movements, which is
quite sensible because between-word transitions are much less
predictable than within-word. Finally, there was a marginally
significant interaction of block and position (F (1,378) =
2.75, p = .098). Figure 4 shows the mean improvement,
from block 1 to block 4, of subjects’ median RTs for each
condition by position in the subsequence. All conditions show
improvements in every position, peaking at positions 3 and 4,
but no condition improves much more than any other, although
the misaligned cue condition trends a bit lower than the others.

Because the most important distinction in position is for
within- vs. between-word movements, we examined the mean
of each participants’ RT advantage (i.e., speed-up) for within-
word movements (i.e., median between-word RT minus me-
dian within-word RT) at each block, by condition. An AN-
COVA showed a significant main effect of block (F (1,42) =
5.96, p < .05) and of condition (F (2,42) = 5.56, p < .01),
with no significant interaction (F (1,172) = 0.87, p = .42).
Shown in full in Figure 5, after the first block the aligned cue
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Fig. 3: Mean of median RTs for within-word movements (i.e.,
not the start of a new word–position 1) for each condition
by training block. Within-word movements did get faster over
time, but no reward condition demonstrated a clear advantage.
Error bars show +/-1SE.

produces a greater speed-up for within- relative to between-
word movements than the other two conditions–although with
variability, suggesting some learners may lag. The no cue
condition looks to make a marked improvement in the final
block, as well. Overall, the aligned cue condition improves
within-word movements 105 ms, whereas misaligned and no
cue facilitated within-word transitions 62 ms and 67 ms,
respectively. Successive blocks increased the advantage, from
43 ms in block 1 to 75 ms, 84 ms, and 111 ms in blocks 2-
4, respectively. In summary, although overall RTs and even
mean improvements from block 1 to block 4 in within-
word movements did not show a differential effect of reward
schedules, looking at the within-subject advantage of within-
word vs. between-word (position 1) movements showed an
advantage of the aligned cue condition beyond the misaligned
and no cue conditions.

Why might we not see this reward effect in our other
analyses? It may be that some words–or even particular
movements–are easier to learn in some conditions, but not
others: e.g., perhaps the reward in one condition highlights
a particularly useful (i.e., low frequency) transition, drawing
attention to it. To begin looking in more detail, we examined
the mean improvement in participants’ median within-word
movement RTs from block 1 to block 4 for each word, by
condition. Shown in Figure 6, unsurprisingly participants in all
conditions improve at all six action subsequences. However,
one word stood out as more difficult: subsequence 1-4-2-3
saw the least improvement in all three conditions, and was
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Fig. 4: Mean improvement in subjects’ median RTs from
Block 1 to Block 4 by condition and subsequence position.
Bars show +/-1SE.

lowest of all in the aligned cue condition. We do not yet have
a hypothesis about why this should be so, but we believe it
warrants further investigation. Of the other five words, only 3-
1-2-1 stood out as being a bit easier in the no cue condition,
but for no readily apparent reason.

We examined the RT improvements from block 1 to block
4 for each the six single within-word movements (e.g., 2-
1, in word B, C, and D) by condition, to see if the reward
schedules may be motivating participants to learn more (or
simply move faster) for during particular parts of the sequence.
Shown in Figure 7, the smallest improvement is seen in
movements 1-4 and 2-3 in the aligned cue condition: the two
diagonal components of the standout slow word (1-4-2-3) for
that condition. Overall, the misaligned cue showed consistent
improvement in all of the movements, while the other two
conditions showed improvements for particular movements.

Accuracy during training was not analyzed as subjects only
needed to move the cursor to the highlighted target, a some-
what trivial task with an error rate of less than 1%. However,
the mouse movement trajectories made during training–and
their dynamics over the course of training–are of great interest
and complexity. Figure 8 shows the mean change in the total
distance traveled (block 4 - 1) during the first 500 ms of
each movement, before the next stimulus has been shown,
compared to the post-stimulus portion of the movement, split
by condition and position within the action word. At all word
positions a greater distance is traveled in the pre-stimulus
predictive portion of the movement by the end of training,
although the Aligned Cue condition shows less predictive
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Fig. 5: Mean advantage of within- vs. between-word move-
ments from subjects’ median RTs by condition across blocks.
Participants in the Aligned Cue condition showed more overall
speedup for the within- vs. between-word movements (with
great variability), although the No Cue condition caught up in
the final block. Bars show +/-1SE.

motion than the other conditions. Less distance is traveled
for all but the first position (when there is greater uncertainty)
during the post-stimulus portion, showing that subjects were
moving appropriately. Moreover, an ANOVA of the number of
cursor positions spent outside the stimulus boxes during the
predictive (i.e., ISI) period showed a significant main effect
of training half (F (1,44) = 4.05, p < .05), but no significant
main effect of condition (F (2,80) = 2.22, p = .11), nor a
significant interaction (F (2,80) = 0.79, p = .46). As suggested
by Figure 8, participants spent more of the predictive ISI
in-between stimuli in the late half of training, a mean of
15,266 points in the second half vs. 14,397 points in the
first half. Thus, the decreased inter-stimulus arrival times
observed across training are not necessarily only a speedup
of movement, but are enabled by earlier, predictive movement
toward the next stimulus.

Overall performance in the generation task was quite low
and did not differ by reward condition: of 24 attempts per
subject, a mean of only 8.5 words were reproduced in the
aligned and misaligned cue conditions, compared to 9.5 in
the no cue condition. This indicates that subjects did not gain
much explicit knowledge of the studied sequences.

III. GENERAL DISCUSSION

In the present study we used a trajectory-tracking adaptation
of the serial reaction time task to investigate the learning
of action ‘words’ (i.e., subsequences three movements long),
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inspired by the design of a statistical word segmentation study
[6]. Participants were given a long sequence of stimuli to
direct their cursor to, and we observed reaction times de-
crease within-word as they learned the regular subsequences.
Between-word movements did not show as much speed-up.
In principle, this replicates the Saffran et al. [6] finding that
a continuous stream of syllables (in our case, movements)
can be segmented into interchangeable words (i.e., action
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Fig. 8: The mean change in distance (pixels) traveled from
Block 1 to Block 4 after the next stimulus appears (post-
stimulus) compared to the 500 ms pre-stimulus period, when
predictive movements may be made. More distance was cov-
ered during the pre-stimulus portion of each movement for all
conditions–and equally at all within-word positions–although,
the Aligned Cue condition shows less predictive motion.
The post-stimulus portion of movements show a decrease in
distance traveled for all but the the first position, although the
Misaligned Cue condition shows little change.

subsequences) solely on the basis of between- vs. within-
word transition probabilities. By recording responses during
training, we were able to see learning online, instead of only
with a final test.

Furthermore, we manipulated reward schedules–giving
learners a lump sum of points after completing each word,
after the first movement in a word, or points spread across the
movements in a word–in an attempt to help or hinder learning,
as in prosodic cueing studies of word segmentation [6]. Fu
et al. [8] found that offering a reward to participants in an
SRT task increased motivation, resulting in higher generation
task performance. Although our reward manipulation had
surprisingly little effect on the rate or magnitude of subse-
quence learning during training, we did find that within-word
movements sped up more relative to between-word movements
in the aligned cue condition than in the misaligned or no
cue conditions. Our analysis of predictive movements, made
before the next stimulus appeared, showed that people made
more of these movements in the late half of training than
early in training. However, no differences were found between
conditions. Further in-depth analyses of particular motions
(e.g., in terms of their relative frequency and predictability)
and average response trajectories may yet reveal more subtle
effects of reward on learning.

Our study acknowledges that complex actions are rarely

completely unambiguous, but rather often have probabilistic
dependencies on the past stimuli and actions. We wanted to
investigate how people learn sequences that have statistical
uncertainty at different levels: the next action may be ambigu-
ous given only the previous stimulus (e.g., 1-2 occurs in four
words), but may be less ambiguous conditioned on the previ-
ous two stimuli (3-1-2 occurs only twice). This is similar to the
motivations espoused by statistical learning researchers (e.g.,
[6]). Indeed, implicit learning and statistical learning research
often have the same motivations and intuitions, and should
be more strongly linked [9]. The trajectory SRT paradigm is
suitable for building this bridge–and of a material that supports
detailed analyses, which promise to reveal the continuous
dynamics of the underyling cognitive processes [10], [11].

In future work, we plan to include more detailed analyses of
movement times and trajectories as a function of transitional
probabilities and overall probability of occurrence. Sequential
action, in all its complexity, is the foundation of most human
pursuits, and it is thus important to understand how people
learn these sequences. We posit that the best way to measure
this learning is to measure actual movement responses, and
we hope that researchers from diverse backgrounds will join
us. This approach will not only yield a better understanding of
how humans learn, but can help us create more adaptive robot
systems that we will one day work alongside (for a review,
see [7]).
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