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Introduction 
Despite the high degree of referential uncertainty in the world, infants learn nouns with 

astonishing speed. Assuming that caregivers sometimes refer to visible objects, a learner who can 
remember some of the co-occurring words and referents can gradually learn the intended word-
referent mappings after experiencing a variety of situations. Cross-situational learning based on 
cross-modal memory and the statistics of the language environment may be an important way for 
infants to acquire nouns (Gleitman, 1990; Smith, 2000). Cross-situational learning has been 
demonstrated by infants (Smith & Yu, 2008) and by adults (Yu & Smith, 2007). As an ability that 
is likely key to acquiring language—perhaps humanity’s most defining trait, cross-situational 
word learning also offers an enticing glimpse into the interlocking fundamental mechanisms of 
human cognition, as it likely relies on domain-general attention, memory, and learning processes 
(Smith, 2001; Kachergis, 2012).  

In adult cross-situational learning studies, participants are instructed to learn which word 
goes with which object and then study a series of training trials. On each trial, an array of several 
novel objects is displayed while pseudowords are successively heard. Although each pseudoword 
refers to a particular onscreen object, the correct referent for each pseudoword is not indicated, 
thus making meanings ambiguous on individual trials. For example, you might see objects {o1, 
o2} on the first trial, while hearing words {manu, bosa}. You cannot know if manu refers to o1, 
o2, both, or neither; the same is true of bosa. On a later trial you see {o3, o1} while hearing 
{bosa, stigson}. If you have any memory of bosa having appeared with o1 previously, you may 
prefer to strengthen that pairing (i.e., bosa-o1) rather than storing bosa-o3. If you assume that 
words are mapped 1-to-1 to objects, you might also focus on the stigson-o3 association, rather 
than considering the possibility that stigson also refers to o1. Yurovsky & Yu (2008) and 
Kachergis, Yu, & Shiffrin (2012a) have shown that this bias for mutually-exclusive pairings, a 
bias observed in two-year-olds (Markman & Wachtel, 1988; Merriman & Bowman, 1989), is 
present in adults, and can be succinctly explained using an associative model with competing 
biases for strengthening prior knowledge and for attending to stimuli with uncertain associates 
(Kachergis, Yu, & Shiffrin, 2012a). It is not unreasonable to assume that adults and infants share 
the same basic kinds of mechanisms for language acquisition, though they undoubtedly differ in 
degree. Because adults can endure longer duration studies allowing more complex designs, the 
data from such studies can produce additional insights beyond those available from studies of 
infants (e.g., Smith, Smith, & Blythe, 2011; Kachergis, Yu, & Shiffrin, 2012a; Suanda & Namy, 
2012; Yurovsky, Yu, & Smith, 2013a; Gillette, Gleitman, Gleitman, and Lederer, 1999). 

In the original study reported in Yu & Smith (2007) and many follow-up studies (e.g., 
Kachergis, Yu, & Shiffrin, 2010; Suanda & Namy, 2012; Yurovsky, Yu, & Smith, 2013a), 
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language learners are exposed to a set of to-be-learned word-object pairs with equal frequency. 
The current study asks how varied word-object pair frequency affects the course of learning. 
Word frequency varies greatly in natural language (Zipf, 1949), and higher frequency words are 
more likely to be learned faster by infants (Hills, Maouene, Riordan, & Smith, 2010). Intuitively, 
it seems that more frequently appearing pairs will be learned far more easily than less frequent 
pairs, given the greater number of opportunities for disambiguation and storage. It seems 
reasonable that once high frequency pairs are well known, attention should shift from these pairs 
to lower-frequency pairs. Continuing the earlier example, if you later experience a trial with 
objects {o1, o4} and words {bosa, fimi}, you may focus only on storing fimi-o4, since bosa-o1 is 
already quite certain. If learners indeed bootstrap the learning of low frequency words using 
prior knowledge of high frequency pairs, they may be able to learn more of both the high and 
low frequency mappings. 

However, it is not only a given pair’s frequency and knowledge state that might influence 
attention, but also those of the pairs that co-occur with it. It seems reasonable that a pair will be 
learned better if it appears in a set of trials with sufficiently diverse contents (i.e., contexts). In 
the extreme, if two words and objects always occur together, even many times, the correct 
pairings for these stimuli would remain ambiguous, regardless of the number of occurrences of 
these trials. Thus, a stimulus pair that appears with only a few other specific stimuli (i.e., has low 
contextual diversity) might be difficult to learn. Conversely, the more diverse the contexts in 
which a pair appears, the more likely may be the acquisition of that pair. Indeed, it has been 
suggested that word frequency effects on lexical decision times (i.e., for words in the adult 
mental lexicon) can be explained by contextual diversity (Adelman & Brown, 2008). Thus, the 
present study focuses on two potentially influential factors in word-learning: 1) frequency: 
repetitions per word-referent pair and 2) contextual diversity: the number of other pairs each 
pair appears with over time. The role of each individual factor in the context of cross-situational 
learning has not been systematically studied. Moreover, the potential interactions among these 
factors, as illustrated in the above examples, remain unexplored. 

In addition, a third related factor is within-trial ambiguity: how many words and objects 
co-occur together in a learning situation. Until a pair has appeared with all other pairs in the 
vocabulary, increasing within-trial ambiguity can yield greater contextual diversity. Will the toll 
of increased ambiguity outweigh the advantages of increased contextual diversity? Similarly, 
greater pair frequency can yield greater contextual diversity until that pair has been seen with all 
other pairs. Are repetitions solely crucial as learning opportunities, or as a means to increase 
contextual diversity? The current studies systematically investigate these three factors—both 
individually and in combination—and measure their effects on word learning. More specifically, 
Experiment 1 will focus on frequency alone, while Experiment 2 will explore contextual 
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diversity and within-trial ambiguity. Experiment 3 will explore the interaction of contextual 
diversity and frequency. By manipulating the learning input and measuring what is learned, we 
can discover factors that predicate successful acquisition and shed light on the underlying 
learning, memory, and attention mechanisms. Towards this end, we compare human performance 
to two computational word-learning models that have previously accounted for other word-
learning behaviors: the incremental probabilistic model (Fazly, Alishahi, & Stevenson, 2010a) 
and the familiarity- and uncertainty-biased model (Kachergis, Yu, & Shiffrin, 2012a). Finally, we 
consider the propose-but-verify model (Trueswell, Medina, Hafri, & Gleitman, 2013) which 
assumes that learners store a single meaning hypothesis for each word and replace the hypothesis 
if it is disconfirmed. 

Experiment 1 
Participants were asked to simultaneously learn many word-referent pairs from a series of 

individually ambiguous training trials using the cross-situational word learning paradigm (Yu & 
Smith, 2007). Each training trial is comprised of a display of four novel objects with four spoken 
pseudowords. With no indication of which word refers to which object, learners have a small 
chance of guessing the four correct word-referent pairings from the 16 possible ones. However, 
since words always appear on trials with their intended referents, the correct pairings may be 
learned over the series of trials because the present design (like most) produces a statistical 
accumulation of pair counts that is highest for a single pairing. 

The key manipulation of Experiment 1 is to repeat some pairs more often than others 
within the same set of trials. As discussed above, the more often a word-object pair is repeated, 
the more opportunities there are to deduce and rehearse that pairing. In addition, more frequent 
pairs appear with more other pairs, and thus have greater contextual diversity. We created two 
training conditions with subsets of pairs that appear with different frequency. In both conditions, 
training consisted of 27 trials containing 18 word-referent pairs, four of which were displayed on 
each trial. In the two frequency subsets condition (Figure 1, left), 9 of the stimulus pairs 
appeared 3 times (lower right), and 9 of the pairs appeared 9 times (upper left). In the three 
frequency subsets condition, 6 pairs appeared 3 times, 6 pairs appeared 6 times, and 6 pairs 
appeared 9 times. A dramatic frequency effect was predicted: the more frequent pairings would 
be learned more often, and pairs with a mere 3 repetitions may not be learned at all. Importantly, 
the same pair was never allowed to appear in neighboring trials, as this would enable learners to 
selectively attend to the repeated (or unrepeated) stimuli and learn significantly more as we have 
shown elsewhere (Kachergis, Yu, & Shiffrin, 2009b; 2013). 
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Figure 1: Word-referent co-occurrence matrices for the two learning conditions in Exp. 1. Each 
cell represents the co-occurring frequency of a specific word-referent pairs. The 18 correct pairs 
are on the diagonal. The other cells show spurious co-occurrences of incorrect word-referent 
pairs. Co-occurrences range from 0 (red) to 9 (white). Left: in the two frequency condition, 18 
pairs form two frequency groups: 9 repetitions (the top 9 pairs) and 3 repetitions (the bottom 9). 
Right: in the three frequency condition, 18 pairs appear at three different frequencies: 3, 6, and 9 
(the top, middle, and bottom 6 pairs, respectively). 

Subjects 
Participants were 33 undergraduates at Indiana University who received course credit for 

participating. None had participated in other cross-situational experiments. 

Stimuli 
Each training trial consisted of four uncommon objects (e.g., strange tools) concurrently 

shown while four pseudowords were spoken sequentially. The 36 pseudowords generated by 
computer are phonotactically-probable in English (e.g., “bosa”), and were spoken by a 
monotone, synthetic female voice. These 36 arbitrary objects and 36 words were randomly 
assigned to two sets of 18 word-object pairings, one set for each learning condition.  

Training for each condition consisted of 27 trials. Each training trial began with the 
appearance of four objects, which remained visible for the entire trial. After 2 seconds of initial 
silence, each 1 second word was heard followed by two additional seconds of silence, for a total 
duration of 14 seconds per trial. Words were heard in a random order for each participant, and 
condition order was counterbalanced. 

After each training phase was completed, participants were tested for knowledge of word 
meanings. A single word was played on each test trial, and all 18 referents were displayed in 
locations that changed trial-to-trial. Participants were instructed to click on the correct referent 

! !  !!
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for the word (i.e., 18AFC; 18-alternative forced choice). Each of the 18 words was presented 
once, and the test trials were randomly ordered. 

Procedure 
Participants were informed that they would see a series of trials with four objects and 

four alien words, and that their knowledge of which words belong with which objects would be 
tested at the end. After training, their knowledge was assessed using 18-alternative forced choice 
(18AFC) testing: on each test trial a single word was played, and the participant was instructed to 
choose the appropriate object from a display of all 18. Condition order was counterbalanced. 

Results & Discussion 
Figure 2 displays the learning performance  for the subsets of pairs in both training 1

conditions. To test the reliability of the differences between the means shown in Figure 2, we fit 
a logistic mixed-effects regression model to the trial-level accuracy data using the lme4 package 
in R (Bates, Maechler, Bolker, & Walker, 2015; R Development Core Team, 2010). Mixed logit 
models are more appropriate for forced-choice data than ANOVAs, especially when different 
conditions yield different amounts of data, as in the present experiment (Jaeger, 2008). The 
model included random intercepts for subjects with random by-subjects slopes for Frequency, 
and Condition and Frequency as fixed factors (i.e., model syntax: Correct ~ Cond*Freq + 
(Freq|Subject)). Condition was coded as a main effect and Frequency, a continuous 
predictor (3, 6, 9), was centered and scaled to [-1,1]. There was a significant negative intercept, 
showing that participants were less likely to choose the correct answer than an incorrect answer 
(b = -.47, OR  = 0.63, Wald’s Z = -2.38, p<.05). There was no significant main effect of 2

Condition (b = -0.11, Z = -0.80, p = 0.43), with participants learning a mean proportion correct of 
.40 (7.2 pairs) per condition. There was a significant effect of frequency (b = 0.17, OR = 1.18, Z 
= 1.98, p < .05), with participants learning more 9-frequency pairs (M9 = .45) than 6- or 3-
frequency pairs (M6 = .38, M3 = .36). There was also a marginally significant interaction of 
Frequency and Condition (b = -0.28, OR = 0.76, Z = -1.84, p = .07). In the two frequency subset 
condition, participants were significantly more likely to learn 9-frequency pairs (M9 = .47) than 
3-frequency pairs (M3 = .35, paired t(29) = 3.08, p < .01), in accord with the hypothesis that 
greater frequency aids statistical learning. However, this frequency advantage was barely evident 
in the three subsets condition, in which the subsets were learned nearly equally well (M3 = .39, 
M6 = .38, M9 = .41).  

 Data from two subjects were excluded after it was found that their average performance in every condition was below chance 1

(chance in an 18AFC test is .056). This did not change the outcome of any statistical tests.

 The estimated coefficients (b) are interpretable as log-odds, but can also be transformed to an odds ratio (OR = eb).2
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Figure 2: Accuracy for subsets of pairs with different frequency in two training conditions. 
Learning was well above chance (dashed line; 18AFC chance = .056) in every condition. High 
frequency pairs were learned better than low frequency pairs in the two subsets condition, but 
there was no frequency advantage evident in the three subsets condition. Error bars show +/-SE. 

Why did increased frequency aid learning in one condition, but not the other? How can it 
be explained that pairs of frequency 3, 6, and 9 are learned at equal rates? One plausible 
explanation is that once a pair is learned, future trials containing that pair effectively have 
reduced within-trial ambiguity. For example, if a learner sees (A B; a b) and has already learned 
A-a, then B-b may be inferred through one exposure where it would not otherwise be certain. In 
this way, high frequency pairs may be learned first and then used to effectively reduce the degree 
of ambiguity in later trials, and by doing so, they increase the learning of low frequency pairs 
appearing the same trials. If this is true, the contexts in which high and low frequency pairs co-
occur should play a critical role in effective statistical learning. More generally, the context in 
which a word-object pair appears—whether with high frequency (i.e. likely already-known) or 
low frequency (i.e. likely not-yet-learned) words—may greatly affect learning. Indeed, the 
frequency effect in the two subsets condition could be due to limited opportunities for effective 
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bootstrapping: with relatively more low frequency pairs than the three subsets condition, trials 
with only one low frequency pair (a good bootstrapping scenario) may be relatively rare. The 
smaller number of low frequency pairs in the three subsets condition would make this type of 
trial more common, thus smoothing out frequency’s effect on performance. In the next 
experiment, contextual diversity is varied in order to understand the counterintuitive finding in 
Experiment 1 and to directly measure the role of contextual diversity. 

Experiment 2 
Experiment 1 showed that higher frequency can result in greater learning, but does not 

necessarily do so. In Experiment 2, we hold word-referent frequency constant and vary the 
contexts in which each pair appears to measure how the learning of a given pair can be affected 
by the other pairs it co-occurs with during training. The contextual regularities for each word-
referent pair can be captured by two factors: 1) the number of co-occurring words and referents 
within a trial, namely, within-trial ambiguity; and 2) the number of different co-occurring words 
and referents over all the training trials, namely, contextual diversity (CD). The three conditions 
in this experiment manipulated both factors. In the low/medium CD condition, 18 pairs were 
divided into two groups. Six word-referent pairs in the low CD group were constrained to appear 
only with other pairs in this group during training. Likewise, the 12 pairs in the medium CD 
group only co-occurred with each other, and never with the 6 low CD pairs (Figure 3, left). Thus, 
whenever a low CD pair appeared, the other stimuli on that trial had to be selected from the 5 
remaining low CD pairs. In contrast, a given medium CD pair could appear with any of the 11 
other medium CD pairs. Note that frequency was held constant – each of the 18 pairs was seen 6 
times during training – and within-trial ambiguity was the same (3 words and 3 referents per 
trial). Only contextual diversity varied between these two groups. In each of the other two 
conditions in this experiment, all 18 pairs were randomly distributed to co-occur without 
constraint. To explicitly test the role of within-trial ambiguity, we implemented two versions of 
this design: the uniform CD/3 pairs condition with 3 words and 3 referents per trial, and the 
uniform CD/4 pairs condition with 4 words and 4 referents per trial (Figure 3, middle and right, 
respectively). 

Table 1 shows two metrics describing contextual diversity in this experiment: the mean 
number of other pairs that each pair co-occurs with during training, and the mean frequency of 
those co-occurring pairs. These two metrics are inversely related: if a given pair is made to co-
occur with more other pairs, it must occur with each of these other pairs fewer times, on average. 
For example, if pair A-a always appears with pair B-b, the incorrect associations A-b and B-a 
may be learned as they appear equally frequently as A-a and B-b. However, if A-a appears with 
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many other pairs, it is unlikely to occur very often with any one of them (e.g., B-b). This is an 
example of how contextual diversity may be important for learning. 
 

Figure 3: Word-referent co-occurrences for Exp. 2 (0=red, 6=white). Left: in the low/medium 
CD condition, each group’s pairs co-occur only with other pairs within that group. Middle and 
Right: in the uniform CD/3 pairs and the uniform CD/4 pairs conditions, each pair randomly co-
occurs with any of 17 other pairs. 

Greater within-trial ambiguity not only creates more possible associations on each trial, 
but also influences CD: In the 3 pairs/trial conditions, each pair appears on 6 trials, and thus 
appears with 12 other pairs during training (unique or not), In the 4 pairs/trial condition, each 
pair appears with 18 other pairs during training, as it occurs on 6 trials with 3 other pairs. Thus, 
pairs in the 4 pairs/trial condition appeared with more diverse pairs than pairs in the 3 pairs/trial 
conditions. Moreover, note in Table 1 that the 12 medium CD group pairs have very similar CD
—by both metrics—to the uniform/3 pairs condition, since pairs in both these groups appeared 
with only 12 other pairs. 

Subjects 
Undergraduates at Indiana University received course credit for participating. The low/

medium CD condition had 63 participants, and uniform 3 pairs/trial condition had 38 

!  !  !  !

Table 1 
Contextual diversity by condition in Experiment 2 

Condition   \   CD Low/Med Uniform/3 Uniform/4  
Pairs per CD Group 6 12 18 18 
Mean # of different 
co-occurring pairs 4.0 9.2 8.8 12.2 

Mean frequency of 
co-occurring pair 3.0 1.3 1.4 1.5 
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participants, and the uniform 4 pairs/trial had 77 participants . None had previously participated 3

in cross-situational experiments. 

Stimuli & Procedure 
The sets of pseudowords and referents for Experiment 2 were identical to those used in 

Experiment 1, but several new trial orderings were constructed to vary contextual diversity and 
within-trial ambiguity. The 27-trial, 4 pairs/trial conditions had the same timing as Experiment 1. 
The 36-trial, 3 pairs/trial conditions also had 3 seconds per stimulus pair, with 2 seconds of 
initial silence, making a total of 11 seconds. Knowledge was assessed after the completion of 
each condition using 18AFC testing, as in Experiment 1. 

Results & Discussion 
Figure 4 displays the mean number of pairs learned in Experiment 2. We fit a logistic 

mixed-effects regression model (N = 3,132) to the trial-level accuracy data with subject as a 
random factor and with Condition and CD group, a continuous predictor (18, 12, or 6 pairs) 
centered and scaled to [-1,1], as fixed factors, with by-subject random slopes for CD (model 
syntax: Correct ~ Cond + CD + (CD|Subject)). There was a significant negative intercept, 
showing that participants were less likely to choose the correct answer than an incorrect answer 
(b = -1.10, OR = 0.33, Z = -6.16, p < .001). Using the 3 pairs/trial uniform CD condition as 
baseline, there was a significant negative effect for the 4 pairs/trial condition (b = -.78, OR = 
0.46, Z = -5.43, p < .001), showing that greater within-trial ambiguity leads to lower performance 
(3 pairs/trial M = .43, 4 pairs/trial M = .32). However, there was no significant effect of being in 
the low/medium CD condition (b = -0.13, Z = -0.95, p = .34), showing that this condition was 
overall no different than the 3 pair/trial condition (varied CD M = .43). As discussed, these two 
conditions have nearly the same degree of CD (see Table 1) along with the same level of within-
trial ambiguity, which may explain their equal difficulty. There was also a significant effect of 
CD group (b = 0.89, OR = 2.42, Z = 5.15, p < .001), indicating that being in a larger CD group 
results in improved learning. Another model, this time using by-item CD (centered but not 
normalized), found similar results, with a CD odds ratio of 1.15 (b = .14, Z = 4.62, p < .001). 

Within the low/medium CD condition, the 12 medium CD pairs were learned 
significantly better than the 6 low CD pairs (12 pairs M = .47, 6 pairs M = .34, paired t(62) = 
4.11, p < .001), demonstrating a clear advantage for greater contextual diversity. Moreover, 
incorrect responses in the low/medium CD condition were largely chosen from the subset of 

 The number of subjects varied between conditions because several groups of participants were collected on different 3

overlapping subsets of the conditions. Specifically, 36 participants performed the low/medium CD condition, and 26 did both the 
low/medium CD and 4 pairs/trial conditions. An additional 51 subjects in the 4 pairs/trial condition were included from a study 
where it was used as a control condition.
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pairs within the same group (thus co-occurring with the target pair): 56% percent of incorrect 
answers for low CD words were chosen from the 6 low CD referents (chance=33%, t(55) = 5.48, 
p < .001), and 76% of incorrect answers for medium CD words were chosen from the 12 medium 
CD referents (chance=66%, t(55) = 3.72, p < .001). Thus, even incorrect answers reflected co-
occurrences encountered during training, rather than arbitrary guesses.  

Figure 4: Proportion correct by CD group for the three conditions of Experiment 2. The uniform 
CD 4 pairs/trial condition had lower performance than the 3 pairs/trial conditions. Within the 
Low/Medium CD condition, the 12 medium CD pairs had better performance than the 6 low CD 
pairs. In total, the number of pairs learned in the Uniform CD 3 pairs/trial condition and the 
Low/Medium CD condition were nearly equal, and greater than the the number learned in the 4 
pairs condition. Error bars show +/-SE. 

In summary, this experiment demonstrated that with the same frequency and degree of 
within-trial ambiguity, greater CD alone improves learning. However, the cost of greater within-
trial ambiguity in the 4 pairs/trial condition outweighs any benefit conferred by greater CD in 
this condition (mean CD of 12.2 vs. mean CD of 8.8 in the 3 pairs/trial uniform condition; see 
Table 1). In Experiment 3, frequency and contextual diversity are manipulated within several 
conditions to elucidate the interaction of these factors. 
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Experiment 3 
Experiment 2 showed that greater contextual diversity results in greater learning of those 

pairings. In Experiment 3, within-trial ambiguity was held constant, and frequency and 
contextual diversity were varied within 4 training conditions. Each condition had 18 pairs 
divided into 3 subsets of 6 pairs occurring at 3 frequencies: 3, 6, and 9. In the low CD condition, 
the pairs in each of the three frequency subsets appeared on trials only with pairs in the same 
group – never with pairs in other groups (Figure 5a). That is, a 3-repetition pair would only be 
seen with other 3-repetition pairs, and similarly for 6- and 9- repetition pairs. In this way, 
learning a 3-repetition pair could help disambiguate only other 3-repetition pairs, etc. In the high 
CD condition, pairs of different frequencies co-occurred randomly throughout training (Figure 
5b). In this condition, learning a given pair may help participants learn any pairs it co-occurred 
with in the future. In the final two conditions, the 12 pairs from two frequency subsets were 
allowed to co-occur, and the remaining 6 pairs co-occurred only with themselves (i.e., within-
frequency). In the 3/6 mingled condition, the 3- and 6-repetition pairs co-occurred during 
training, and the 9-repetition pairs only appeared with other 9-repetition pairs (Figure 5c). In the 
3/9 mingled condition, 3- and 9-repetition pairs were mixed, and the 6-repetition pairs could 
only appear with other 6-repetition pairs (Figure 5d).  

Figure 5: Co-occurrence matrices (0=red, 9=white) from each condition. There were three 
frequency subsets in each condition (3, 6 and 9). To-be-learned pairs were manipulated in four 
ways to co-occur within and between each subset. 

a. !    b.!  

c. !    d.!  !!
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Subjects 
Participants were undergraduates at Indiana University who received course credit for 

participating. The low CD and high CD conditions had 34 and 67 participants, respectively. The 
3/6 mingled condition and 3/9 mingled conditions had 66 and 40 participants, respectively.  4

None had previously participated in cross-situational experiments. 

Stimuli and Procedure 
The 72 pseudowords and 72 objects used for Experiment 3 were the same as those used 

in Experiments 1 and 2, assigned to four sets of 18 word-object pairings, but several new trial 
orderings were constructed to covary contextual diversity with pair frequency. Training for each 
condition consisted of 36 trials. Each training trial began with the appearance of three objects, 
which remained visible for the entire trial. After two seconds of initial silence, each of the three 
words was heard (randomly ordered, duration of one second) followed by two additional seconds 
of silence, for a total duration of 11 seconds per trial. After each training phase, participants were 
given an 18AFC test for knowledge of each word, randomly-ordered as in Experiments 1 and 2. 

Results & Discussion 
Figure 6 displays the average levels of learning achieved in Experiment 3, split by 

condition and frequency subset. We fit a logistic mixed-effects regression model  to the trial-5

level accuracy data (N = 3,744) with CD group (18, 12, or 6 pairs) and Frequency (3, 6, or 9) 
represented as continuous numeric predictors (centered and scaled to have unit deviation), with 
Frequency, CD, and their interaction as fixed effects and including by-subjects random slopes for 
CD, Frequency, and their interaction. The estimated intercept was not significant (b = .22, Z = 
1.50, p = .13). There was a significant positive effect of Frequency (b = 0.74, OR = 2.10, Z = 
11.85, p < 0.001), showing that higher frequency generally improves learning (M3 = .41, M6 = .
54, M9 = .66). There was also a significant positive effect of contextual diversity (b = 0.36, OR = 
1.43, Z = 3.98, p < 0.001), showing that increased CD benefits learning. However, there was also 
a significant negative interaction of Frequency and CD (b = -0.23, OR = 0.79, Z = -3.11, p < 
0.01). This interaction is explained in detail below. 

 The conditions had unequal numbers of participants because initially only Low CD, High CD, and the mingled 3/6 conditions 4

were created and run (27 participants). The 3/9 condition was created and added for 7 participants, before the experiment was 
deemed too long. The Low CD was dropped as it was being included in a learning trajectory study (Kachergis, Yu, & Shiffrin, 
2014), so the High CD and two mingled conditions were run on 33 additional subjects, in order to have sufficient points for 
within-subject comparisons across conditions.

 Model syntax: Correct ~ Freq*CD + (Freq*CD|Subject). This maximal model was chosen based on the experiment’s 5

design (see Barr, Levy, Scheepers, and Tily, 2013). More complex models, such as those treating Frequency and CD as factors, 
failed to converge.
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In the low CD condition, increased frequency resulted in significant increases in learning 
(M3 = .26, M6 = .45, M9 = .75; freq 6>3 paired t(33) = 3.79, p < .001; freq 9>6 paired t(33) = 5.6, 
p < .001). Taken together with the results from Experiment 2, either higher frequency or higher 
contextual diversity can lead to better learning. However, in the high CD condition, in which all 
pairs were allowed to co-occur, significantly more 3- and 6- repetition pairs were learned than in 
the low CD condition (M3 = .49, Welch t(81.2) = 3.51, p < .001; M6 = .66, Welch t(68.1) = 3.24, 
p < .01), although a marginally significant fewer number of 9-repetition pairs were learned (M9 = 
.63, Welch t(82.6) = 1.84, p = .07). Overall, learning was greater in the high CD condition than in 
the low CD condition (high CD M = .59, low CD M = .49, Welch t(149.8) = 2.04, p < .05). Thus, 
mixing pairs of different frequency with a higher degree of contextual diversity increases 
learning of the lower frequency pairs, and allows more total pairs to be learned. This is further 
demonstrated in the two mingled conditions which mixed two of the three frequency subsets 
(Figure 5 c & d). 
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Figure 6: Accuracy for the conditions of Experiment 3, split condition and pair subsets of 
differing frequency. There is a clear frequency effect in the low CD condition that disappears in 
the high CD condition because 3- and 6-frequency pair learning is bootstrapped by 9-frequency 
pairs. In the two mingled medium CD conditions, bootstrapping of the low frequency pair group 
is evident, with learning being strongest in the 3/9 mingled condition. Error bars show +/-SE. 

In the 3/9 mingled condition, 3-repetition pairs were learned better than in the 3/6 mingled 
condition (3/9 mingled M = .57, 3/6 mingled M = .31, Welch t(60.8) = 4.21, p < .001). In the two 
mingled conditions, learning of each 9-repetition subset remained at the same level as in the low 
CD condition (3/6 mingled: paired t(35) = 1.37, p > .05; 3/9 mingled: Welch t(63.2) = .08, p > .
05). Thus, increasing CD helped learning, on average, by boosting acquisition of lower 
frequency pairs—not the higher-frequency pairs. This observation also holds for the 6-repetition 
group in the low vs. high CD conditions: the high CD condition shows greater learning (low CD 
M6 = .45; high CD M6 = .66; Welch t(68.1) = 3.24, p < .01), which could be explained by the 
mixture of medium and high frequency pairs. However, in the 3/6 mingled condition, not 
significantly more 3-repetition pairs were learned than in the low CD condition (3/6 mingled M3 
= .31 vs. low CD M3 = .26, Welch t(57.9) = 0.83, p = .41). It seems that mingling the 6-repetition 
pairs does not allow significant bootstrapping of the low frequency pairs, perhaps because the 6-
repetition are only well-learned towards the end of training, and thus have little opportunity to be 
used as prior knowledge for bootstrapping. These various pairwise comparisons merely serve to 
bolster our intuitions for how frequency and CD, although individually beneficial, negatively 
interact, producing 1) much higher than expected performance for low frequency pairs when they  
occur in high CD contexts (with higher-frequency items), and 2) limited or no benefit for high-
frequency items in high CD contexts—since these are the items that serve as the platform for 
bootstrapping the meaning of low-frequency items.  
 Frequency and CD paint only part of the picture: environmental factors other than CD are 
likely affecting performance. Table 2 summarizes a few environmental statistics broken down by 
condition and frequency group. Although CD for the mixed 3/6 condition 6-repetition pairs is 
higher than for the 9-repetition pairs, context familiarity—the mean frequency so far of the other 
stimuli appearing with a given pair—is lower, and may explain the decreased performance. 
However, the best explanation of human word learning we present here will not be based on 
these summary statistics, but rather built by comparing cognitive models that are built to 
implement specific theories. 
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Models 
 The results from the three experiments showed various effects of frequency and 
contextual diversity in cross-situational learning. To better understand the learning mechanisms 
that underlie the observed behavioral effects, we use a computational modeling approach to 
investigate how process models accumulating statistical information trial by trial might obtain 
results similar to human learners. If successful, the mechanisms that the model incorporates 
would shed light on the human learning system. After giving a brief overview of cross-situational 
learning models, we compare three recent models to see which provides the best account of the 
bootstrapping behavior seen in Experiment 3.  

Various models have been proposed for cross-situational learning, often with different 
goals and intuitions in mind. Models from a machine learning perspective have tried to maximize 
learning,  without  necessarily  implementing  psychological  constraints  or  attempting  to  match 
human performance. For example, Yu and colleagues (Yu, Ballard, & Aslin, 2003, 2005; Yu, 
2008) developed a probabilistic batch learning algorithm based on machine translation that will 
not show any effect of training order. The Bayesian model of Frank, Goodman, and Tenenbaum 
(2009) iterates multiple times over the entire training corpus to converge on a lexicon, and is thus 

 

 

Table 2 
Environmental statistics and accuracy by condition and frequency in Experiment 3 

Condition   Frequency Avg. 
CD 

Avg. Context 
Familiarity 

(CF) 

Avg. Freq. of 
Other Co-oc. 

(non-zero) 

Avg. Age of 
Exposure 

(AE) 

Proportion 
Correct 

Low CD 3 
6 
9 

4.0 
4.0 
4.7 

2.0 
3.5 
5.0 

1.5 
3.0 
3.9 

7.0 
4.5 
1.5 

0.26 
0.45 
0.75 

High CD 3 
6 
9 

5.0 
8.5 
9.8 

3.7 
4.5 
3.8 

1.2 
1.4 
1.8 

4.8 
4.2 
4.5 

0.49 
0.66 
0.63 

Mixed 3/6 3 
6 
9 

5.5 
7.5 
4.7 

2.9 
3.0 
5.0 

1.1 
1.7 
3.9 

6.5 
4.7 
1.5 

0.31 
0.44 
0.61 

Mixed 3/9 3 
6 
9 

4.5 
4.0 
7.5 

4.1 
3.5 
4.3 

1.4 
3.0 
2.4 

8.0 
4.5 
1.5 

0.57 
0.56 
0.73 
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cognitively implausible  for it does not produce trial-by-trial order effects, which we know to be 6

present in human learners (e.g., Kachergis, Yu, & Shiffrin, 2009b).  
Other models assume developmental constraints are of primary importance, and follow 

simple rules as they hypothesize and test word meanings.  Siskind’s (1996) model was the first to 
be  applied  in  a  cross-situational  learning  scenario,  but  due  to  its  inference  based  on  strict 
constraints (e.g., mutually-exclusive pairings) it is overly-sensitive to noise and missing data (for 
an  overview,  see  Fazly,  Alishahi,  &  Stevenson,  2010a).  Recent  hypothesis-testing  models 
propose that learners cannot track more than one proposed meaning for a word at once, and thus 
only store and test a single hypothesis for each word as training proceeds (Medina, Snedeker, 
Trueswell, and Gleitman, 2011; Trueswell et al., 2013). Below, we describe and test the most 
recent of these models, the propose-but-verify model (Trueswell et al., 2013). 

In  another  view,  language  learners  build  associations  between  multiple  words  and 
referents,  learning an entire  network of  meanings  with  varying strength  (e.g.,  Smith,  2000). 
Regier (2005) introduced an associative exemplar model of developmental word learning, but it 
has  only  been applied  to  simple  artificial  data,  not  experimental  data.  More  recently,  Fazly, 
Alishahi,  &  Stevenson  (2010a)  introduced  a  cognitively-plausible  incremental  probabilistic 
model of cross-situational word learning, which has a bias to strengthen pairings that have been 
experienced before (i.e.,  a prior knowledge bias).  We compare this model to a recent model 
introduced by Kachergis, Shiffrin, and Yu (2012a), which has limited attention combined with 
competing biases for attending to uncertain stimuli and for pairings with prior knowledge that 
distinguish it from the Fazly et al. model.  All three models are described below before they are 
applied to the data of Experiment 3, which records complicated effects of both frequency and CD 
within- and between-conditions, offering a challenging opportunity for modeling. Using such 
detailed  empirical  data  to  test  models  will  advance  our  understanding  of  human  learning 
mechanisms as well as other empirical phenomena (Yu & Smith, 2012).

Familiarity- and Uncertainty-biased Model 
The model proposed by Kachergis et al. (2012a) assumes that learners do not attend 

equally to all possible word-object pairings and store all co-occurrences. Rather, selective 
storage is guided by several factors: attention is given to pairings on the current trial, and 
particularly those that are familiar from previous co-occurrence. However, this factor is in 
competition with selective attention directed toward stimuli not already known. The latter 
process is based on the learner’s current state of knowledge, captured by an entropy-based 
measurement of the uncertainty of current word-referent pairings. 

 Note that Frank et al. calls it a computational-level, rather than algorithmic-level model, and thus it may not be expected to 6

produce human-level performance and effects of factors such as frequency and CD. In fact,  the Frank et al.  model usually 
converges on perfect performance for the trial orderings in this study.
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Formally, given n words and n objects to be learned over a series of trials, let M be an n 
word × n object association matrix that is incrementally built during training. Cell Mw,o will be 
the strength of association between word w and object o. Strengths are subject to general decay 
or forgetting but are augmented by viewing of particular pairings.  Before the first trial, M is 
empty. On each training trial t, a set of objects O and a set of words W are presented. If there are 
any new words or objects are observed, new rows or columns are first added. The initial values 
for these new rows and columns are k, a small constant (here, 0.01).  

Association strengths are generally allowed to decay, and on each new trial a fixed 
amount of associative weight, χ, is distributed among the associations between words and 
objects, and added to the (decayed) strengths. The rule used to distribute χ (i.e., attention) 
balances a preference for attending to unknown stimuli with a preference for strengthening 
already-strong associations. Consider the first time a word and referent are repeated, extra 
attention (i.e., χ) might be given to this pair—a bias for prior knowledge. However, as learning 
proceeds, novel pairings might start to stand out on trials, whereas pairings between novel 
objects and known words, or vice-versa, are not considered. To capture these ideas, we allocate 
strength using entropy (H), a measure of uncertainty that is 0 when the outcome of a variable is 
certain (e.g., p(wx|oy) = 1, and for all other oz, p(wx|oz) = 0), and maximal (log2n) when every 
possible outcome is equally likely. In the model, on each trial the entropy of each word (and 
object) is calculated from the normalized row (column) vector of associations for that stimulus 
(i.e., p(o|w) = Mw,o / Σ M.,o) like so: 

The update rule for adjusting and allocating strengths for the stimuli presented on a trial is: 

In this equation, λ is a scaling parameter governing differential weighting of uncertainty and 
prior knowledge, α is a parameter governing forgetting, and χ is the weight being distributed. For 
stimuli not presented on a trial, only forgetting operates. After training, a simulated participant 
tested with a word w and asked to choose its associated referent from m alternatives does so in 
proportion to the strengths of each available referent (e.g., o) to that word (Mw,o).  

2. MUTUAL EXCLUSIVITY AND BASIC BIASES 15

first, attention is mostly divided between w1-o1 and w7-o7, although the remaining two

possible pairings (e.g. w7-o1 and w7-o1) may also receive a small amount of attention.

Formally, givenn words and n objects to be learned over a series of trials, let M be an n

word ⇥ n object association matrix that is incrementally built during training. Cell Mw,o

will be the strength of association between word w and object o. Strengths are subject to

forgetting (i.e., general decay) but are augmented by viewing the particular stimuli.Before

the first trial, M is empty. On each training trial t, a subset S of m word-object pairings

appears. If there are any new words and objects are seen, new rows and columns are first

added. The initial values for these new rows and columns are k, a small constant (here,

0.01).

Association strengths are allowed to decay, and on each new trial a fixed amount of

associative weight, �, is distributed among the associations between words and objects,

and added to the strengths. The rule used to distribute � (i.e., attention) balances a

preference for attending to unknown stimuli with a preference for strengthening already-

strong associations. When a word and referent are repeated, extra attention (i.e., �) is

given to this pair—a bias for prior knowledge. Pairs of stimuli with no or weak associates

also attract attention, whereas pairings between uncertain objects and known words, or

vice-versa, do not attract much attention. To capture stimulus uncertainty, strength is

allocated using entropy (H ), a measure of uncertainty that is 0 when the outcome of a

variable is certain (e.g., a word appears with one object, and has never appeared with any

other object), and maximal (log2n)when all of the n possible object (or word) associations

are equally likely (e.g., when a stimulus has not been observed before, or if a stimulus were

to appear with every other stimulus equally). In the model, on each trial the entropy of each

word (and object) is calculated from the normalized row (column) vector of associations for

that word (object), p(Mw, ·), as follows:

H(w) = �
nX

i=1

p(Mw,i) · log(p(Mw,i)) (1.1)

The update rule for adjusting and allocating strengths for the stimuli presented on a
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trial is:

Mw,o = ↵Mw,o +
� · e�·(H(w)+H(o)) ·Mw,oP

w2W
P

o2O e�·(H(w)+H(o)) ·Mw,o
(1.2)

In this equation, ↵ is a parameter governing forgetting, � is the weight being distributed,

and � is a scaling parameter governing di↵erential weighting of uncertainty (H(·); roughly

novelty) and prior knowledge (Mw,o; familiarity). As � increases, the weight of uncertainty

(i.e., the exponentiated entropy term, which includes both the word and object’s association

entropies) increases relative to familiarity. The denominator normalizes the numerator so

that exactly � associative weight is distributed among the potential associations on the

trial. For stimuli not on a trial, only forgetting operates. After training and prior to test, a

small amount of noise (c = .01 here) is added to M. At test learners choose the associated

referent for the word from the m alternatives in proportion to their strengths to the word. I

fit the model separately to each between-subjects condition (13 means/condition), in which

the number of late repetitions varied. In the bottom row of Figure 1, I show the best model

fits for these three conditions. In the 3 Late condition, (parameters: 3 Late: � = 0.31,

� = 2.34, ↵ = 0.91; 6 Late: � = 0.20, � = 0.88, ↵ = 0.96; 9 Late: � = 3.01, � = 1.39,

↵ = 0.64). The total sum of squared error (SSE) between these fits and subject means is

0.1. Although there are some di↵erences between data and predictions, the model captures

the major findings: early pairs (w1-o1)were learned quite well, and late pairs (w7-o7) were

quickly learned when introduced because of the uncertainty bias. Thus, the model shows

advantageous ME behavior as a result of a bias to associate uncertain words with uncertain

objects. The competing bias to strengthen previous associations keeps uncertain stimuli

from quickly becoming associated to stimuli that already have associates.

Remarkably, the level of learning of both ME-compatible pairing types did not much

depend on the number of early or late pair repetitions. The model also shows the increase

in learning of cross-stage (e.g., w7-o1) pairings with increasing late repetitions, and the

increased performance in the 0 early stage conditions, although here the model over-learned

in all 3 late stages. These are conditions in which two words-object pairs always co-occur,
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Incremental Probabilistic Model 
The Fazly et al. (2010a) model of word-learning represents the meaning of each word w 

as a probability distribution p(.|w) over the objects appearing in the corpus of trials (i.e., scene-
utterance pairs). These distributions are learned incrementally as trials are experienced, much 
like the familiarity- and uncertainty-biased model. On a given trial presenting a set of words W 
and objects O, the Fazly et al. model updates the association strength of each presented word w 
to each presented object o in a way that more strongly associates w and o if p(o|w) is high (i.e., a 
familiarity bias), unless some other presented word w′ is already associated with o. The update 
rule for association scores is: 

where assoc(w,o) = 0 if w and o have not co-occurred. The normalizing denominator makes 
associations competitive, decreasing a word’s alignment probability with an object if another 
word is already strongly associated with that object. Association scores are thus a weighted co-
occurrence count, adjusted by the confidence that o is referred to by w. This is much like the 
familiarity bias in the Kachergis et al. model, except the update rule in that model is based on the 
raw association score rather than the conditional probability of o given w. Unlike the Kachergis 
et al. model, the Fazly et al. model does not have an uncertainty bias that encourages mapping 
unknown words to unknown objects; this is only accomplished by competition via the smoothed 
normalizing denominator. Learning performance in the Fazly et al. model is based on the 
association scores: 

where M is the set of all objects that have been seen thus far, λ is a small smoothing constant, and 
β is an upper bound on the number of expected symbol types. In Fazly et al. (2010a), β was set to 
8,500—the total number of words that might be expected to be learned in a developmental 
corpus—and λ = 10-5: less than 1/β since it represents the probability of a new object going with 
a familiar word. Fazly et al. also thresholds the comprehension score (p(o|w)) at which a word w 
is considered to be known for object o (e.g., Fazly et al. uses θ = .7). However, for our 
simulations this assumption is unnecessary: it does not add any flexibility in capturing the final 
probabilistic choice, nor does it affect the learning trajectory since comprehension scores for 
above-threshold words are still subject to updating. 
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cross-situational training. This model is described below, and then compared to the

familiarity- and uncertainty-biased model introduced in Chapter 2.

Incremental Probabilistic Model. The Fazly et al. (2010) model of word-learning

represents the meaning of each word w as a probability distribution p(·|w) over the objects

appearing in the corpus of trials (i.e., scene-utterance pairs). Like the familiarity- and

uncertainty-biased model, these distributions are learned incrementally as trials are

experienced. On a given trial presenting a set of words W and objects O, the Fazly et al.

(2010) model updates the association strength of each presented word w to each presented

object o in a way that more strongly associates w and o if p(o|w) is high (i.e., a familiarity

bias), unless some other presented word w0 is already associated with o. A dummy word is

added to W to smooth the probability distributions, and to allow objects in the scene to

not have a corresponding word.7 The update rule for association scores is:

assoc(w, o) = assoc(w, o) +
p(o|w)P

w02W p(o|w0)
(0.3)

where assoc(w, o) = 0 if w and o have not co-occurred. The normalizing

denominator makes associations competitive, decreasing a word’s alignment probability

with an object if another word is already strongly associated with that object. Association

scores are thus a weighted co-occurrence count, adjusted by the confidence that o is

referred to by w. This is much like the familiarity bias in the Kachergis et al. (2012c)

model, except the update rule in that model is based on the raw association score rather

than the conditional probability of o given w. Learning performance in the

textciteFazly:2010gw model is based on these association scores:
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p(o|w) = assoc(w, o) + �P
oj2M assoc(w, oj) + � · � (0.4)

where M is the set of all objects that have been seen thus far, � is a small

smoothing constant, and � is an upper bound on the number of expected symbol types. In

Fazly et al. (2010), � was set to 8,500–the total number of words that might be expected

to be learned in a developmental corpus–and � = 10�5: less than 1/� since it represents

the probability of a new object going with a familiar word. Fazly et al. (2010) also

thresholds (✓ = .7) the comprehension score (p(o|w)) at which a word w is considered to

be known for object o. However, for our simulations this assumption is unnecessary, and

does not add any flexibility in capturing probabilistic choice.

Model Results. The models were fit to response-level data for all subjects and

conditions simultaneously using log-likelihood as a measure of fit. Fig. 20 shows the best

fit of the probabilistic incremental model (� = .03, � = 1, 822). The model shows a clear

frequency e↵ect in the Low CD condition, with higher frequency aiding learning, much

like humans. However, the model shows nearly the same frequency e↵ect in all of the

other conditions, whereas people show a benefit for lower frequency pairs when they are

mixed with more frequent pairs. Thus, the best fit of the Fazly et al. (2010) model does

not capture the bootstrapping behavior that people show. Will the uncertainty bias in the

associative model enable it to match human learning?

Fig. 22 shows the best fit of the familiarity- and uncertainty-biased model to means

from the various experiments, showing that the model captures the important between-

and within-condition qualitative results. Specifically, while it still captures the pure

frequency e↵ect in the Low CD condition, in the High CD condition the associative model

also shows an increase in the learning of 3- and 6-frequency pairs, with 9-frequency pair
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Associative Models’ Results 
The models were fit to response-level data for all subjects and conditions simultaneously 

using log-likelihood as a measure of quantitative fit. Figure 7 shows the best fit of the Fazly et al. 
(2010a) probabilistic incremental model (λ = .017, β = 135.2). The model shows a clear 
frequency effect in the Low CD condition, with higher frequency aiding learning, much like 
humans. However, the model shows nearly the same frequency effect in all of the other 
conditions, whereas people show a benefit for lower frequency pairs when they are mixed with 
more frequent pairs. Thus, the best fit of the Fazly et al. model does not capture the 
bootstrapping behavior that people show.  Will the uncertainty bias in the associative model 7

enable it to match human learning?   

Figure 7: 

 Fazly, Ahmadi-Fakhr, Alishahi, & Stevenson (2010b) presented model fits that qualitatively match those of Experiment 3—at 7

least for Low and High CD conditions. However, the results shown in that paper have much higher overall performance than the 
human data, and do not optimize the model’s overall quantitative fit to the human data, as do the results of Figure 7 in the present 
paper, which show their model’s optimal quantitative fit. Model comparison is more fittingly based on quantitative fits to human 
performance data than more subjective qualitative fits, although of course a qualitative—and explanatory—match is also 
desirable. Finally, it is important to note that although the trial orderings used in the Fazly et al. (2010b) simulations were 
generated according to the design of Experiment 3, they were not exactly the trial orderings used here.
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Figure 7: Best-fitting accuracy for the Fazly et al. incremental probabilistic model to Experiment 
3. The Fazly et al. model shows a clear frequency effect in the Low CD condition, much like 
humans. However, unlike people, the model’s performance in the other conditions is much the 
same, and is not much affected by the CD manipulations. Error bars show +/-SE of item-level 
model performance. 

Figure 8: The strength- and uncertainty-biased model fits qualitatively well to Experiment 3, 
showing both a pure frequency effect in the Low CD condition, as well as the bootstrapping of 
low frequency pairs when they appear in contexts with higher frequency pairs. Error bars show 
+/-SE of item-level model performance. 
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Figure 8 shows the best fit of the familiarity- and uncertainty-biased model to means 
from Experiment 3, showing that the model captures the important between- and within-
condition qualitative results. Specifically, while it still captures the pure frequency effect in the 
Low CD condition, in the High CD condition the associative model also shows an increase in the 
learning of 3- and 6-frequency pairs, with 9-frequency pair learning remaining strong. This 
pattern closely matches human learning, down to the slight decrease in performance for the 9-
frequency pairs, explained by the fact that more attention is going to the higher-uncertainty, 
lower-frequency pairs late in training, rather than reinforcing existing knowledge of high 
frequency pairs. The associative model also qualitatively matches performance in the two 
mingled conditions, with the learning of low frequency pairs being boosted when they occur in 
contexts with higher frequency pairs. There are some slight differences: the model shows a larger 
boost for 3-frequency pairs in 3/6 Mingled than people show, and not as high performance for 9-
frequency pairs in 3/9 Mingled. However, these differences may be in part because the same 
parameters (χ = 0.31, λ = 29.9, α = 1.0) were used for all participants and conditions.   

Overall, the BIC of the probabilistic incremental model’s best fit  is 4,960.3, which is 8

worse than the BIC achieved by the associative model, 4,911.4. Thus, as well as providing a 
better qualitative fit, the associative model provides a better quantitative account for the data, 
despite having one more free parameter. The uncertainty bias seems to help explain the 
interaction of frequency and contextual diversity, and we can test our intuitions about how the 
model learns by examining the trial-to-trial learning in the model. Figure 9 shows how the 
model’s knowledge develops over time in each condition, and for each frequency group. In the 
Low CD condition, learners gradually—and simultaneously—learn all three frequency groups; 
no interaction is possible because pairs of different frequency do not co-occur. But in the High 
CD condition, the model first learns the high frequency pairs, and at the end quickly learns the 
low frequency pairs. Because these pairs have higher uncertainty at the end than their co-
occurring high frequency brethren, they are given more attention. That is, leveraging the 
uncertainty bias of the associative model, the prior knowledge of the high frequency pairs allows 
the late bootstrapping of low frequency pairs. The Appendix shows trial-by-trial learning in the 
Fazly et al. model for the best-fitting parameters, demonstrating that it does not capture 
interactions when mixing pairs of differing frequency.  

 A grid search using Fazly et al.’s model implementation confirmed our best fit. 8
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Figure 9. The strength- and uncertainty-biased model’s knowledge development by frequency in 
the conditions of Experiment 3 for the best-fitting parameters. In the High CD condition, notice 
how the model first learns the high frequency pairs, and only later quickly learns the low 
frequency pairs, which have higher uncertainty. Rather than requiring us to interrupt human 
learners at various points of training to view the learning process, the model allows us to predict 
behavior—bootstrapping, in this case. 

 Finally, we consider a recent model that is based on assumptions that are quite different 
than the two models evaluated above. Whereas the above models assume that multiple word-
referent associations are retrieved, adjusted, and stored each time a word appears, assumptions of 
extremely limited memory have led other researchers to propose models that store only a single 
hypothesized referent for each word, and will replace this hypothesis only if it is disconfirmed 
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(Medina et al., 2011; Trueswell et al., 2013). Elsewhere we have shown that a model 
implementing Medina et al.’s assumptions cannot account for the range of learning trajectories 
shown by individual cross-situational learners (Kachergis, Yu, & Shiffrin, 2012b). We now 
investigate whether the latest hypothesis-testing model (Trueswell et al., 2013) can account for 
the effects of varied frequency and contextual diversity. 

Propose-but-Verify Model 
 The assumptions of the hypothesis-testing approach are outlined in Medina et al. (2011):  

(i) learners hypothesize a single meaning based on their first encounter with a word; (ii) 
learners neither weight nor even store back-up alternative meanings; and (iii) on later 
encounters, learners attempt to retrieve this hypothesis from memory and test it against a 
new context, updating it only if it is disconfirmed. Thus, they do not accrue a “best” 
final hypothesis by comparing multiple episodic memories of prior contexts or multiple 
semantic hypotheses. (p. 3) 

The propose-but-verify model introduced by Trueswell et al. (2013) follows similar assumptions, 
positing that learners store a list of word-object pairs with only up to a single object stored for 
each word. The model begins with an empty list, and on each training trial the presentation of 
each word w causes the attempted retrieval of the stored hypothesis oh, successful with 
probability αo. If retrieval of oh fails (probability 1-αo), the hypothesis w-oh is forgotten (i.e., 
erased from the list). If oh is retrieved and is present on the current trial, the recall probability α is 
strengthened by αr. If oh is retrieved but is not present on the current trial, the hypothesis w-oh is 
removed. For any words remaining on the trial without a hypothesis, new hypothesized objects 
are chosen randomly without replacement from the set of objects that are not already part of a 
hypothesis. This manner of selection effects a local mutual exclusivity constraint which could 
quickly bootstrap the meaning of a novel word-object pair, though by a different means than the 
associative model. Testing in the propose-but-verify model is straightforward: for each word, the 
model chooses the hypothesized object for each word. For words with no hypothesis, objects are 
randomly chosen from the set of objects that are not part of a hypothesis. 
 The propose-but-verify model’s two parameters—initial recall probability (αo) and recall 
reinforcement (αr)—were fit to the means of each condition and frequency grouping in 
Experiment 3. The best-fitting parameter values were αo = 0.06 and αr = 0.31, achieving a BIC of 
4,963.3, worse than both the Fazly et al. probabilistic incremental model (BIC = 4,960.3) and the 
associative model (BIC = 4,911.4). To predict how well these models will generalize to future 
data, we examined cross-validation fits to split halves of the data, finding that the Kachergis et 
al. associative model still has the best performance and generalizes as well as the other models 
(see Appendix for details). This investigation also suggested that none of the models are greatly 
overfitting, and provided a range of reasonable parameter values. In the Appendix, we also 
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explore correlations between human and the models’ item-level performance, as well as with 
several statistics of the training input, including frequency, CD, and two measures proposed by 
Fazly, Ahmadi-fakhr, Alishahi, & Stevenson (2010b): context familiarity and age of exposure. 
We found that the Kachergis et al. model best accounts for item-level human performance, and is 
most correlated with context familiarity (i.e., the mean number of appearances of the other 
stimuli in a given pair’s context). On the other hand, the Trueswell et al. and Fazly et al. models, 
are highly correlated with each other, with performance differences strongly determined by the 
environmental factor of pair frequency. Please see the Appendix for additional details. 

General Discussion 
Our experimental manipulations suggest that three factors that significantly determine the 

success of cross-situational statistical learning are word-referent frequency, contextual diversity, 
and the degree of within-trial ambiguity. These three factors are related: picking values for two 
of the factors somewhat constrains the value of the third. For example, consider a pair that is to 
appear 6 times during a 3 pairs/trial training set. On each of the 6 trials it occurs on, 2 other pairs 
must also appear. These 12 pairs may each be distinct, or some particular pairs may appear more 
often than once. If two pairs always co-occur, the “correct” word-referent pairs cannot be 
disambiguated. However, if one of the two pairs is learned prior to the appearance of the other 
(as may be the case for a high frequency pair), then the other may be learned more easily, since 
the prior knowledge of the frequent pair reduces the uncertainty about that word and object, thus 
directing attention more to the uncertain objects. Thus, it is not only the diversity of the contexts 
in which a pair appears, but also the familiarity of the stimuli appearing with a pair that 
determines the likelihood of learning that pair (Fazly, Ahmadi-Fakhr, Alishahi, & Stevenson, 
2010b). Context familiarity—though not explicitly manipulated—turned out to be the 
environmental factor most correlated with item-level human performance; stronger than 
frequency or contextual diversity (see Appendix). 

Experiment 1 demonstrated that although varied frequency can result in increased 
performance for more frequent pairs, it is also possible for varied frequency to perplexingly yield 
equal performance, perhaps as a result of contextual diversity and familiarity effectively reducing 
within-trial ambiguity. Experiment 2 showed that increased contextual diversity improves 
learning for equal-frequency pairs. Moreover, pairs with greater within-trial ambiguity were 
learned less well—despite greater contextual diversity. Experiment 3 confirmed that more 
frequent pairs are learned more often, even when contextual diversity is controlled. In addition, 
increasing the contextual diversity of two groups of different frequency by allowing these groups 
to co-occur augmented learning of the less frequent of these groups. Indeed, the highest learning 
performance observed was in conditions with varied frequency and high contextual diversity. 
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Intriguingly, these two characteristics that yield high performance are also embedded in real-
world learning environments: words in any natural language have a skewed frequency 
distribution (Zipf, 1949), and naturalistic learning situations are highly complex, with many co-
occurring words, events and objects (e.g., Medina et al., 2011; although perhaps not as complex 
from a child’s perspective: Yurovsky, Yu, & Smith, 2013b).  

Varied frequency and contextual diversity seem to make situations more complex, but our 
results suggest that they facilitate statistical learning. Much structure is present in our world:  
words, referents, and their contexts vary in frequency, diversity, and the composition of the 
situation. The above experiments demonstrate that human learners are sensitive to these different 
kinds of regularities. Varied frequency may seem to be a natural candidate as the most important 
factor in cross-situational word learning, as more appearances yields more opportunities to 
acquire the appropriate association. However, if that pair always appears with only a few other 
pairs, or simultaneously appears with many other pairs, each learning opportunity is worth very 
little: context is critical. Disambiguating the proper pairings via high contextual diversity or 
context familiarity and a reasonably small degree of within-trial ambiguity enables learning to 
proceed with ease. Indeed, simulation studies confirm that cross-situational learning under non-
uniform frequency distributions is robust when contextual uncertainty is kept low (e.g. for 
Zipfian distributions: Vogt, 2012), and more importantly if learners apply mutual exclusivity 
(Reisenauer, Smith, & Blythe, 2013). Because the presence of known high frequency pairs 
reduces within-trial ambiguity, highly ambiguous situations containing some familiar referents 
become feasible learning opportunities. This process of bootstrapping via familiar contexts may 
account for the rapid acquisition of vocabulary in infants, who are known to learn frequent nouns 
earlier than less-common nouns (Goodman et al., 2008). Once known, the ubiquitous nouns 
make possible the rapid acquisition of infrequent nouns. Indeed, this is the account provided by 
the uncertainty- and familiarity-biased associative model (Kachergis et al., 2012a). This model 
uses uncertainty to quickly learn low frequency pairs at the end of training, as they appear with 
well-known high frequency pairs. The Fazly et al. model, lacking an uncertainty bias, does not 
show this bootstrapping behavior while matching human performance levels. The Trueswell et 
al. hypothesis-testing model is able to capture pure frequency effects by having a very low initial 
probability of forming a hypothesis (αo = 0.06), accompanied by a fairly large reinforcement 
probability when it is encountered again (αr = 0.31), but does not show bootstrapping of rare 
pairs from high frequency ones. Indeed, the Fazly et al. and Trueswell et al. models, despite 
seemingly different mechanisms, show strongly-correlated item-level predictions, being largely 
driven by co-occurrence frequency but not context effects (see Appendix). 

Rather, the human behavioral results suggest a learning system that does not learn 
independent associations between individual words and referents based on mere frequency, but 
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one that rather learns a system of associations where context is critical (see Yu, 2008; Smith, 
2000). In such a system, a single word-referent pairing is correlated with all the other pairings 
that share the same word and all the other pairings that share the same referent, which are in turn 
correlated with more word-referent pairs—an entire system of them. We contend that the 
improvement in statistical word learning is in part due to the recruitment of accumulated latent 
lexical knowledge which is used to learn subsequently appearing pairs. Indeed, the strongest 
environmental factor predicting item-level human performance was an item’s average context 
familiarity, showing that the system of other associations predicts which pairs will be acquired. 
The associative model, which learns associations between all co-occurring words and objects 
incrementally, leverages competing prior knowledge and uncertainty biases to show an even 
stronger correlation with item-level human performance (see Appendix). Such a learning system 
is consistent with the finding that children who are slow to learn language have a less well-
connected semantic network than normally developing children (Beckage, Smith, & Hills, 2011): 
late talkers cannot bootstrap the meaning of rare words if they do not have the high frequency 
contextually diverse words mastered. Finally, although these experiments investigate word-
object associations, we suggest that our findings may well generalize to other domains, for our 
model assumes domain-general mechanisms that can reproduce many associative learning 
behaviors (see Kachergis, 2012). 
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