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Abstract—Gathering data becomes increasingly simple
whereas the labeling of collected instances remains difficult.
Active learning provides methods to reduce the labeling effort
by intelligent selection of instances. In contrast to building
mathematical models or developing heuristics to solve this
task, we pursue another approach: We let humans select the
instances which should be labeled. Participants are asked to
learn to predict the sex of 18 abstract illustrations of bugs as
either male or female. This article describes the design, goal
and the execution of this study with 14 groups (71 participants).
In this exploratory study we analyze humans’ balance between
exploration and exploitation, the participants’ learning behavior,
the collaboration within the group as well as the question when
to stop querying. The comparison of human performance with
baseline active learning algorithms provides promising results
which indicate that machine active learning might benefit from
incorporating human strategies. Additionally, we provide the
complete data and extracted spreadsheets for download.

I. INTRODUCTION

Active learning (AL) is a machine learning paradigm which
provides algorithms for mining data when little information
is available. In classification tasks, this means that labels for
(almost) all instances from the data pool are missing. The
selection strategy of an AL algorithm selects the most useful
instances from the (candidate) pool to be labeled by one or
more experts or non-experts, who are generally referred to
as oracles [1]. These labeled instances build the training set
for the classifier which is retrained subsequently. This repeated
procedure is called the active learning cycle (see Fig. 1). Using
these label acquisitions, the selection strategy aims to increase
the performance of the classifier as fast as possible close to
the optimal value.

Especially industrial companies show a growing interest in
AL as the acquisition of unlabeled databases is relatively easy
and cheap. On the contrary, annotating data with high quality
labels demands a substantial financial investment. Frequently,
oracles are impersonated by human experts. For example, in
a quality assessment system, sensors (e.g., pressure, temper-
ature, or photo sensors) provide features for each product,
but the quality (i.e., the label) of the outcome can only be
determined by a human expert using visual inspection.

In this article, we change the role of the human from
the labeling to the selection expert. Hence, this other human
impersonates the selection strategy not the oracle. Thereby,
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Fig. 1. The conventional active learning cycle [1], [2].

we want to investigate the ability of humans to create and im-
plement a strategy for selecting the most beneficial instances.
Therefore, we developed a simple game where humans are
asked to separate female from male bugs based on color, dots,
and eyes. The challenge is to correctly determine the sex of all
18 bugs by asking the game master to provide the true sex for
of the bugs while minimizing the number of queries. The long-
term goal of this study is to assess if humans’ creative way
of finding strategies maps to and possibly even improves the
mathematical models of existing active learning algorithms.

The contributions of our work are the following:
• We developed and conducted a pilot study to investigate

how humans solve an active learning task.
• We provide a detailed description of our novel exper-

iments including the complete dataset as well as all
material to reconstruct the exact setup.

• We evaluated the data and show that humans might
be effective in the process of selecting the most useful
instances for AL, not only for labeling data. The raw data
is available as download.

• We outline one option to conduct a follow-up experiment
stating possible hypotheses and challenges.

The remainder of this article is structured as follows: First,
we start with a brief overview of relevant literature followed by
a detailed description of our experimental setup. The process
of extracting the information from the study is summarized
in Sec. IV and followed by its evaluation. In Sec. VI, we
describe how a future study might look like to evaluate our
findings more exhaustively. Finally, we conclude our work and
give a brief outlook.



II. RELATED WORK

Active learning (AL) is a machine learning paradigm which
aims to successively select information to improve the per-
formance of a classifier [1]. This process can be visualized
in the AL cycle (see Fig. 1): We start with an empty set of
labeled instances and a large set of unlabeled ones. Iteratively,
a selection strategy ranks the usefulness of the labeling can-
didates from the unlabeled set. The label of the most useful
instance (or more instances in batch acquisition) is passed to
the oracle to be labeled and added to the training set. This
oracle usually is a human expert but can also be a simulation
software or some expensive test in a lab [3]. In each iteration,
the classifier is retrained based on the most recent information
about the data.

One of the most used techniques is uncertainty sampling
[4] which aims at requesting labels for instances regarding
which the classifier is most uncertain about (e.g., instances
near the classifier’s decision boundary). A decision theoretic
approach is expected error reduction [5] where each possible
label outcome of each label candidate is simulated and the
generalization error of the classifier is estimated each time. Fi-
nally, the label of the instance which reduces the expected error
the most is acquired. The downside of expected error reduction
is the execution time. To overcome the intensive computation,
probabilistic active learning [6] was introduced which is a
decision-theoretic approach modeling the uncertainty of a
classifier using the true posterior probability. These aforemen-
tioned approaches use mathematical models and heuristics to
determine the usefulness of labeling candidates assuming that
human experts provide labels. Hence, a variety of studies have
investigated people’s annotation performance [7], [8], [9].

In contrast to this well-known scenario, we aim to investi-
gate whether humans might improve the selection of promising
instances. This problem has recently been addressed in the
field of visual analytics: Weigl et al. [10] propose MapView,
a graphical data representation tool for active learning. With
their approach, the authors showed that the user is able to
select labeling candidates intelligently. The study by Bernard
et al. [11] provides more details on the selection performance
and compares it to artificial AL algorithms. Nevertheless, the
focus of both studies is on visualization and representation of
data rather than on humans’ active selection strategies.

Research in cognitive psychology has shown that people
who are allowed to self-select training instances outperform
those given randomly-selected instances in a variety of learn-
ing scenarios, including simple classification problems [12],
learning word-object mappings [13], and learning causal rela-
tionships [14]. Zhu et al. [15] demonstrated that people can
learn and refine a two-class decision boundary in a semi-
supervised setting: when given unlabeled instances in addition
to labeled instances, participants learned a better decision
boundary than when given only labeled instances. Using the
same 3D visual stimuli and two-class learning problem as
in [15], Castro et al. [16] investigated whether people learn
best from labeled 1) randomly-sampled instances, 2) self-

selected instances, or 3) passively-observed instances selected
by an active learning algorithm. Under low levels of label
noise, active learners (i.e., who selected each next instance to
see labeled) converged more quickly on the decision boundary
than those who passively observed randomly-selected labeled
samples. However, human active learners were slower than
the theoretical exponential convergence. Under high levels
of label noise, people receiving machine-selected instances
outperformed human active learners, perhaps because they
learned to “trust the machine” [16].

More recent work has attempted to understand what se-
lection strategies people choose to employ in such active
category learning tasks and to what degree the advantage
of human-selected instances can be conferred on others who
passively receive the selected instances of an active learner.
Markant et al. [17] investigated the difference in classification
performance after people receive samples either actively se-
lected by themselves or received from another active learner.
They found that active participants, receiving the samples they
chose, outperformed participants who passively received the
samples chosen by those same active participants.

Markant et al. [18] examined how people choose which in-
formation to sample in an active category learning task, finding
that instead of sampling instances with high uncertainty across
all possibilities (i.e., label entropy), they are biased to select
items that reduce uncertainty between two alternatives. That
is, they favor reducing local uncertainty, for example picking
instances that differ only on a single feature (i.e., margin
sampling), rather than choosing instances that are expected to
most reduce global uncertainty, which often vary on multiple
dimensions. This preference may reflect cognitive constraints
involved in evaluating which of all possible instances is most
informative to sample next, even to the extent that humans may
be best at considering a single feature dimension at a time.
Moreover, this “control of variables” strategy is similar to that
used in scientific reasoning [19]. While most active category
research has involved classes distinguished by one or two
features with a linear decision boundary, other research has
considered how efficiently people are able to search a novel
hypothesis space with several partially-overlapping features.

Kachergis et al. [20] investigated whether school-aged chil-
dren could learn to search through a novel stimulus space with
16 exemplars and 11 binary features in a tablet-based game
similar to 20 questions or “Guess Who?”. Generally, such
information search tasks offer two types of queries: (a) one can
scan particular hypotheses (e.g., “Is it instance A?”), or (b) one
can ask a constraint-seeking question concerning a particular
feature (e.g., “Does it have feature X?”). As features might be
relevant to multiple remaining hypotheses, they can often more
efficiently narrow the hypothesis space, at best allowing binary
search through the space. However, using feature queries
optimally requires evaluating the relative informativeness of
each feature, with re-evaluation after each successive query.
Children chose effective but often suboptimal feature queries,
and made some errors in updating the possible remaining
hypotheses.



III. PILOT STUDY

A. Goal
The goal of our study is to find out how humans solve the

active learning (AL) task. The long-term goal is to gain new in-
sights for our active machine learning research by recognizing
relevant influential factors to improve the mathematical model
of a selection strategy. In this particular study, one of the main
aims was to create a game which is easily understandable for
anyone, in order to enable unbiased strategic thinking without
knowledge in machine learning and algorithmic thinking. The
experiment should be designed for both small groups and
single subjects to be able to investigate collaborative problem-
solving as this becomes more relevant in machine AL.

B. General Idea
The general idea is to sort pictures into two groups by find-

ing out distinctive features of each group. Motivated by [17],
we choose to let the subject learn how to discriminate bugs
by their sex. To solve this task, the subject is able to ask
for the correct sex (label) of a bug to identify classification
hypotheses. Also, we implement an incentive to save queries.

C. Materials / Stimuli
We created 18 paper cards1 with abstract illustrations of

bugs (six examples are given in Fig. 2). The bugs differ in
eye color, number of dots, color of dots, size of dots, and
location of dots. Table I summarizes each of these features
including the number of feature values and the information if
this feature is relevant for classification.

Fig. 2. Six exemplary illustrations of the bugs (upper row represents male
bugs, lower row represents female bugs).

The classification rule states as follows: Bugs with green
eye color are male, bugs with yellow eye color are female. To
classify bugs without eyes, the decisive feature is the number
of dots: Four or more dots correspond to male bugs, three
or less dots correspond to female ones. The color, size and
location of dots is irrelevant for discriminating the sex. One
major point when designing the bugs was that it is clear for
everyone that prior knowledge from biology is not relevant for
classification. Hence, every subject was in the same situation
and the success of solving the task is solely dependent on the
subjects’ creativity and strategic thinking.

1Download at www.ies.uni-kassel.de/p/bug-study#papercards

TABLE I
CHARACTERISTIC FEATURES OF BUGS, THEIR POSSIBLE VALUES, AND
WHETHER THEY ARE RELEVANT FOR CORRECTLY SOLVING THE TASK.

Feature Feature Values Relevance

Eye color green, yellow, missing yes
Number of dots 1–7 yes
Color of dots black, white no
Size of dots small, medium, big no
Location of dots red, green, yellow, blue no

D. Description of Participants

The experiment has been conducted with student groups of
different size as part of a freshman game at the beginning
of the first semester at the University of Kassel. There were
14 groups containing a total of 71 participants. Each group
contained three to six students (more male than female) which
have probably never heard of classification and active learning.
The majority of them was aged between 18-20 years and did
not know each other well. Each participant agreed to be filmed
anonymously (bird’s-eye view only capturing the playground,
no faces) and that the collected data can be used for research
purposes.

E. Executing the Experiment

In order to have an unbiased active learning experiment, we
solely inform the participants in this study (subjects) about
possible labels (male and female) and the general goal of
the game but neither about selection strategies nor about
classification in machine learning. During preparation of the
experiment, the 18 cards have been randomly spread across
the playground and equally many candies have been prepared
as some sort of currency.

A schematic setup is shown in Fig. 3 with 8 bugs and
8 candies: The left and right peripheral regions of the play-
ground have been marked with the problem classes (male, resp.
female). The game master ensured that everyone understood
the task prior to starting the game. Each group had 5 minutes
until each bug had to be classified. During this period, each
group was allowed to discuss, to rearrange the cards, and to
ask for the correct sex of a bug (one after the other). The game
masters, impersonated by student assistants, took over the role
of the oracle telling the requested sexes of the bugs. Note
that each label request had a cost of one candy. Additionally,
the participants have been informed that they will loose two
candies for every wrongly classified bug after the 5 minutes
had passed. Hence, each group faced the trade-off between
saving candies during game time and loosing more candies
due to lack of information in the end.

The three participants depicted in Fig. 3 wanted to know
the sex of one red and one green bug. Hence, they got the
information of their sex (male and female) for the cost of
two candies. With that information, the group decided to
temporarily classify another bug as female whereas the other
bugs remain unclassified. Next, they would probably ask for
another label until they are able to classify the unlabeled bugs
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Fig. 3. Example state of our study: The three participants queried labels for
two bugs (one male and one female) and payed two candies. One bug (the
red one) has been classified as male based on the subjects’ own inferred rule;
thus they did not have to pay one candy.

with some certainty. Finally, the game master will evaluate the
hypotheses and collects two candies for every wrong decision.
The remaining candies serve as the reward for the group.

F. Optimization function

As mentioned above, each group has a budget of 18 candies,
which is used to query the true sex of a bug for one candy
(the number of queries is denoted as q). Each misclassification
err induces costs of two candies. The goal (r∗) is to save as
much candies as possible as the reward r.

r∗ = max(r) r = 18− q − 2 · err

IV. EXTRACTING INFORMATION FROM THE STUDY

The whole study has been captured by video which built
the basis for extracting data to analyze the results. Therefore,
we created two spreadsheets2 for every group that participated
in our experiment. This includes general information like the
group size and the number of active participants. Additionally,
we collected information (at a rate of every second) about
each query (including the bug identifier, the group’s purpose
and what triggered this query), actions on the playground like
reordering the cards, the identification of specific features of
the bugs and the current classification hypotheses for each bug
(unknown, male, and female). An overview of the additional
features is given in Table II. The specific features are described
in greater detail in the following sections.

A. General Information about the Groups

The general information describes the basic properties of
each group, i.e., the group size and the number of actively
participating members of the group. As the videos have
been anonymized, it was difficult to assign actions to single
members. Active participation in this context is defined by
contributing to the result by gestures or talking. In general, we
noticed that, mostly, one or two members of a group have been
active, whereby the other active members only participated

2Download at www.ies.uni-kassel.de/p/bug-study#spreadsheet

TABLE II
FEATURES OF THE SPREADSHEET

Feature Feature values

Time in seconds 1–300
Queried bug 1–18
Query purpose Exploration, Exploitation, Validation
Query trigger Eyes, dot color, dot distribution
Detected feature Eyes, dot color, dot distribution
Bugs sorted by Eyes, dot color, dot distribution
Hypothesis bug 1,. . . ,18 Male, female or undecided

partially. If a participant barely spoke, we did not count him
or her as an active person.

B. Querying the Game Master

Except for the general information, all entries have been
determined w.r.t. time at a rate of one second. As the maximal
time limit was 5 minutes, these values vary between 1 and 300.
If a group finished earlier, the upcoming time values have been
omitted. Each bug has a unique identifier (see backside of the
card) between 1 and 18. The queried bug-column contains the
corresponding bug at to the specific time when the sex of the
bug was queried from the game master.

In addition to the bug identifier, we determined information
about the group’s query purpose. The value of a cell is either
exploration, exploitation, or validation. In the sense of AL
research, we define validation as an action to validate a specific
classification hypothesis [1]. The term exploitation is used
when a group has a broad idea how a male and female bug
may look like but the queried bug has attributes of both
classes [1]. The following situation constitutes an example of
an exploitative query: The participants have already queried a
male bug with 7 dots and a female bug with one dot. Thus, they
know that the number of dots play an important role, but they
do not know the correct switching point. A query is marked
as exploration if the group is not able to find information
about the queried bug in the data. Especially the first request,
therefore is of exploratory nature as no data is available.

When studying the videos, we noticed that lots of queries
have been triggered by specific features. This information has
been captured in the field query trigger. Here, we distinguished
the eye color, the dot color, and the distribution of dots. The
latter summarizes the feature number of dots and location of
dots, as we later noticed that an alternative decision rule arose:
the location of dots. If eyes were missing and each field (red,
green, yellow, and blue) contained at least one dot, the bug
was male. This is equivalent to the original hypothesis: If the
eyes were missing and the number of dots is greater or equal 4
the classify as male. Sometimes, it was unclear which feature
triggered the query as it was not named. In that case, we tried
to derive the value from the context, like gestures and the
recent discussion.

C. Detecting Features and Resorting the Bugs

Sometimes, groups sorted the cards by some detected fea-
ture in order to improve their current classification hypothesis



or to detect characteristics which might lead to a better selec-
tion strategy. The column bugs sorted by contains information
about this particular event each time the group mentions a
particular feature to be relevant for classification, rearranges
the cards by a specific feature, or speaks of its relevance.
In some cases, this leads to a change in their classification
hypotheses, whereas, in other cases, it is solely used to cluster
the cards in order to find the best bug to query next.

As the group is faced with a full series of data processing
actions, the first step was to notice the differences between
the bugs. Each time, a group identifies a relevant feature, it
is added to the column detected feature. Sometimes, a group
does not name this feature explicitly. In this case, we registered
it to an estimated time which is the first usage of that feature
in classification or querying.

D. Classification Hypothesis

For each bug, we collected data on the group’s current
classification hypothesis which might be m(ale), f(emale) or
unknown (in the beginning). The columns hypothesis bug x
(x ∈ {1, . . . , 18}) show the group’s classification hypotheses
for every point in time. First, all queried bugs are added to
the corresponding cells, as the group knows the true label.
Moreover, when a group member predicts the sex of a bug
out loudly or sorts this bug to the left, resp. right of the table,
we updated the classification hypothesis for the corresponding
bug. These predictions vary with the amount of information.
However, a classification hypothesis proposed by one group
member is not recorded if the group rejects or ignores it.

Table III summarizes information of all 14 groups that
participated in our study: group identifier, total number of
participants, number of active participants, number of queries,
number of correct and wrong classifications in the final status,
and reward in terms of candies that are left.

V. EVALUATION

The goal of this evaluation is to investigate how humans per-
form as selection strategy in the active learning task. As a first
step, we aim to describe human behavior to see if this type of

TABLE III
GENERAL INFORMATION ABOUT GROUPS AND THEIR PERFORMANCE.

ID Group
Size

Active
Participants

No. of
Queries Correct Wrong Reward

(Candies)

1 4 3 7 17 1 9
2 6 6 8 18 0 10
3 6 5 8 16 2 6
4 5 3 8 14 4 2
5 4 4 6 15 3 6
6 5 4 6 15 3 6
7 4 3 5 15 3 7
8 6 4 7 18 0 11
9 6 5 8 15 3 4
10 6 4 8 17 1 8
11 6 3 7 18 0 11
12 6 3 9 17 1 7
13 3 3 9 18 0 9
14 4 3 9 18 0 9

experiment is appropriate to detect human-inspired strategies
which will improve active learning algorithms. We are aware
that a study with only 14 groups and 71 participants might
not be sufficient to show significant results. Still, as suggested
by Nuzzo [21] in the article about scientific methods, we aim
to perform a two-stage analysis: This pilot study serves as an
exploratory study to fix the experiment design and research
questions for the confirmatory experiment, which shows the
importance of our pilot study. Nevertheless, the results and
insights of this study should be made public to encourage
interdisciplinary research in the field of active machine and
human learning as performed by psychologists.

In average, 7.5 out of 18 bugs (3.86 male and 3.64 female)
have been queried and 1.5 bugs have been wrongly classified.
The best groups (ID 8, 11) received a reward of 11 candies by
classifying all bugs correctly with only 7 queries. The record
of unofficially tested data science professionals is a reward
of 13 candies with only 5 requests and no misclassification.
Note that the best result would be to classify all bugs correctly
by chance without any request (probability of 0.0004%). The
average time is 288.36 seconds which shows that almost every
group used the full time of 5 minutes.

The following sections describe our findings and analyze
the results of the pilot study in terms of human learning
performance, machine learning performance, and stopping
criteria.

A. First Exploration, Then Exploitation / Validation

One of the major challenges of AL is balancing exploration
and exploitation [1]. The typical assumption is that one has
to start with exploration due to lack of information and later
refine the decision boundary by exploitation. Fig. 4 shows the
relative frequency of the groups’ query purpose (exploration,
exploitation, validation) w.r.t. the query iteration. Note that the
number of queries decreases after 5 iterations as some groups
stopped querying. Obviously, the first query was completely
explorative as no information was available. Over time, we see
an increase of exploitation and validation. Normally, validation
is not explicitly mentioned in AL algorithms. The results
show that the participants of this study tend to build up
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Fig. 4. Relative frequency of the query purpose (exploration, exploitation,
validation) w.r.t. the query iteration.



hypotheses to be validated. Only a few queries had the purpose
of exploitation.

We conclude that humans either build up hypotheses even
if there is only few evidence, or data (the bugs) with more
categorical features than numerical ones is not ideal for
exploitative queries. Nevertheless, these results confirm the
general understanding of a good selection strategy.

B. Learning Performance

Results of AL algorithms are often visualized by learning
curves. The idea is to plot the performance of the iteratively
trained classifier over time (resp. the number of queries). A
well performing method thereby achieves high performance in
a short time. Hence, we have to optimize two objectives here:
1) the final performance, and 2) the speed of improvement.

In our experiment, we did not force the participants to
classify each unlabeled bug after each query. Therefore, we
have an interval for the performance which considers the
undecided bugs as potentially wrong to get the lower boundary
and potentially correct for the upper boundary of performance,
depicted as gray area in Fig. 5 for two exemplary plots of
groups 1 and 3. The red star at the end marks the final decision
and the time point when the group decided to stop. The vertical
dashed lines emphasize the time points of queries with the
color indicating the query purpose (exploration, exploitation,
or validation). In order to evaluate the benefit of a single query
for machine learning, we exported a machine readable dataset
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Fig. 5. Learning curves of group 1 and 3. The gray area shows the accuracy
interval of the group. The accuracy of an artificial decision tree classifier
trained on the queried data is shown in blue. The vertical lines show the time
points and the purpose (color) of a query.
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Fig. 6. Accuracy plot showing the correlation between human classification
and the decision tree classifier. The red line indicates perfect matches.

as a CSV file3. Then, we trained an artificial decision tree
classifier (with gini impurity as splitting criteria) to get pre-
dictions for every time point. The training samples consist of
the queries made during the experiment by the corresponding
group. This performance is plotted in blue in Fig. 5. Learning
curves for all groups are available for download4.

Fig. 6 depicts the correlation between human classification
and the decision tree classifier to show that the results of
both are comparable. For five groups, the accuracy of both
classifiers have been completely identical (points on red line).
The result of additional six groups solely varies in one
misclassification. The three gray dots have been marked as
outliers as these results are based on guesses not a rule
(e.g., one group was not able to formulate a reasonable
classification hypothesis although the queried bugs were great
for classification).

C. Comparison with Baseline Algorithms

To evaluate if it is convenient to investigate the selection
strategies of our participants in greater detail, we compared
them to standard artificial AL baselines, namely a random
strategy and a uncertainty-based strategy. We are aware of
the fact that there are more advantageous methods but due
to clarity of visualization and due to the fact that our par-
ticipants are completely untrained, we decided to only use
these standard baseline methods. Fig. 7 shows the learning
curves of these baseline algorithms and learning curves from
the best group, the best five groups and all groups using
the previously described decision tree classifier. Random and
uncertainty sampling were executed 100 times to cope with
random effects. All learning curves are reported by its mean
and standard deviation except for the best group (only one
line). Note that uncertainty sampling used random sampling
until both classes have been found. Our application is a
transductive AL setting, i.e., we aim to only classify the
instances from our candidate pool and do not aim to generalize
for unseen data. Hence, the training and test set are similar.
As the number of queried labels varies across the groups, we
decided to only evaluate first 6 queries.

3Download at www.ies.uni-kassel.de/p/bug-study#csv-data
4Download at www.ies.uni-kassel.de/p/bug-study#learningcurves
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Fig. 7. Learning curves for random sampling and uncertainty sampling, as
well as the results from all 14 groups, the best 5 groups and the best group.
Each curve shows the mean accuracy and standard deviation.

The plot shows that the mean of all groups achieves only
mediocre results but the best group, resp. the mean of the best
5 groups is advantageous compared to the baseline algorithms.
The ranking of groups was based on the mean over all
queries. Nevertheless, we have to be careful interpreting these
results: Having tested 14 groups which additionally have no
experience in performing this task might underestimate the
true performance of human domain experts. Following the
AL evaluation gold standard approach in [2], it is beneficial
to use the same classifier for all selection strategies. This
again underestimates the human performance as they did
not optimize the decision tree but their own classification
hypothesis. Furthermore, the selection of the best groups (resp.
its ranking) should be determined in a separate experiment
or task similarly to evaluating hyperparameter optimization
techniques.

D. Collaboration is Beneficial for Active Learning

To evaluate the impact of collaboration during the experi-
ment, we visualized the reward in terms of remaining candies
w.r.t. the number of active participants in Fig. 8. The reward
is given as box plots showing the minimum, the first quartile,
the median, the third quartile, and the maximum. Note that
the number of groups vary across the X-axis as we only have
one group with 6 active participants.

The left plot shows the reward of the original experiment
using the groups’ original classification hypotheses whereas
the right one shows the reward using an artificial decision
tree classifier. Interestingly, a bigger group does not improve
human hypothesis making, whereas the decision tree seems to
benefit from collaborative selection. Our interpretation is that
collaboration improves the selection of bugs as this helps in
finding bugs which are controversial and therefore diverse. In
contrast, it is difficult to merge these different, possibly vague
human hypotheses into one general classification rule which
leads to poor classification results.
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Fig. 8. Box plots showing the reward with human classification and the
artificial decision tree w.r.t. the number of active participants.

E. Stopping Criterion

All in all, five groups finished prior to the final time limit
of 5 minutes. In this section, we aim to investigate what might
have triggered their decision to stop querying as this is a big
open issue in AL research. For all five groups, the purpose of
the last query has been consistently used to validate an existing
hypothesis. In the second last step, only one group chose to do
an exploratory query. The other four groups queried to validate
or to explore. Hence, our interpretation is that groups who
successfully validated their hypothesis once (or even twice)
have been confident enough to stop the query process.

VI. POSSIBLE SETUP FOR A COMPREHENSIVE STUDY

This exploratory study showed some advantages of collab-
orative human selection in an AL task and provided insights
in human query behavior. As a result, we aim to extend this
research and to conduct a study which is 1) larger and 2) in a
more controlled environment. As having both aspects in one
study would increase the effort excessively, we decided to have
two separate experiments.

To conduct the first experiment, we aim to implement a
highly versatile, mobile-ready web application which builds
on the idea of that study. Hence, users play a game trying to
find the correct hypothesis of differently difficult classification
tasks on multiple datasets. To gather lots of data, we focus to
have an easy and understandable user interface and we will
use this tool in lectures and workshops. To evaluate learning
performance and finding superior strategies, we use clustering
techniques to find similar strategies. A high score board will
increase the competition and live analysis will provide an
interesting feature for tutorials on AL. We aware of the fact
that participants might get help, might play without having
understood the game, etc. Hence, we use the variety of data
to describe random behavior and still show significance. To
assign games played at different days to one player, we aim
to use cookies or user identifiers.

Additionally, we plan to have a second comprehensive
study in a fully controlled environment. Hence, subjects will
be reviewed and asked to provide general information about
themselves using a questionnaire. Then, we have two different
datasets with three learning tasks of different difficulty. One of



these datasets will be used as a control experiment to be able
to proof hypothesis across experiments. In order to evaluate
the benefit of a single query for the participants, we ask them
to predict the classes of each object at any point in time.
The experiment is conducted with a high-resolution, multi-
touch display to capture accurate, high-resolution temporal
data which can be evaluated without human inspection.

Both studies will be executed in cooperation with expe-
rienced psychologists. Additionally, we plan to have some
subjects use the web application in a controlled environment to
hopefully find mappings from one study to the other. Thereby,
we can enrich data of the big study with information from the
controlled experiments.

VII. CONCLUSION

The aim of our research is to evaluate human active learn-
ing performance. This first, explorative study of our two-
stage analysis generally showed that machine active learning
research will probably benefit from creative human strategy
building. In this article, we described the full experimental
design including material for download such that this study
can be easily replicated and validated. The evaluation of
the extracted data showed that humans start with explorative
queries which are later replaced by queries for validation or
exploitation. This is similar to findings in artificial AL re-
search [22]. Additionally, we provide learning curves for each
group and compared their results to artificial AL baselines. The
preliminary findings on collaborative aspects and the problem
of when to stop active learning suggests hypotheses for further
research, described in the previous section.

This study is reproducible research and therefore enables
researchers to use our data for their own studies and hope-
fully stimulate research in this area. For example, one could
investigate more complex methods to assess the usefulness
of a human query. This study also contributes to research in
the field of dedicated and opportunistic collaborative active
learning [3], [23], visual analytics [11], and active category
learning [24]. Especially, interdisciplinary research between
cognitive psychology and artificial intelligence seems to be
interestingly promising.
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